Abuse of methenamine in foodstuff is harmful to the health of people. Routine methods recommended by the national standard are indirect assays with complicated pretreatment of samples or less sensitivity. In this work, core-shell Au nanoparticles@inositol hexaphosphate@MIL-101(Fe) nanoparticles, designated as Au@MIL-101, are successfully synthesized by layer-by-layer assembly. Metal-organic framework (MOF; MIL-101)-modified AuNPs could narrow the distance between neighboring Au@MIL-101, which increases the amount of "hot spots" and contributes excellent enhancement of Raman scattering. In addition, certain target molecules could access the proximity to the "hot spots" by the strong interaction capability of MOF with -COOH groups. Taking the syngeneic effect of "hot spots" and chemical enhancement via specific binding, Au@MIL-101-based Raman protocol with huge sensitivity is developed to achieve direct detection of methenamine. It has good linearity of dynamic concentration from 3.16 × 10 to 1.0 × 10 M with correlation coefficient ( R) of 0.9908. The limit of detection reaches 5.0 × 10 M. As a practical application, such an Au@MIL-101-based Raman protocol could be used for the direct determination of trace methenamine in vermicelli, which meets the requirements of the national standard.
In this work, an S hybrid nanosheet
with multiple functions is
synthesized by in situ modification of gold nanoparticles
(AuNPs) onto two-dimensional (2D) metalloporphyrinic metal–organic
framework (MOF) (Cu-tetra(4-carboxyphenyl)porphyrin chloride(Fe(III)),
designated as AuNPs/Cu-TCPP(Fe). Cu-TCPP(Fe) nanosheets contribute
peroxidase-like activity, and AuNPs have glucose oxidase (GOx) mimicking
performance, which induce the cascade catalysis reactions to convert
glucose into hydrogen peroxide (H2O2), and then,
by using AuNP catalysis, H2O2 oxidizes the no
Raman-active leucomalachite green (LMG) into the Raman-active malachite
green (MG). Simultaneously, in the presence of AuNPs, sensitive and
selective surface-enhanced Raman scattering (SERS) determination of
glucose can be achieved. The bioenzyme-free SERS assay based on such
AuNPs/Cu-TCPP(Fe) nanosheets is used for detection of glucose in saliva,
showing good recovery from 96.9 to 100.8%. The work paves a new way
to design a nanozyme-based SERS protocol for biomolecule analysis.
Lymphatic metastases are closely associated with tumor relapse and reduced survival in colorectal cancer (CRC). How tumor cells disseminate within the lymphatic network remains largely unknown. Here, we analyze the subclonal structure of 94 tumor samples, covering the primary tumors, lymph node metastases (LNMs), and liver metastases from 10 CRC patients. We portray a high-resolution lymphatic metastatic map for CRC by dividing LNMs into paracolic, intermediate, and central subgroups. Among the 61 metastatic routes identified, 38 (62.3%) are initiated from the primary tumors, 22 (36.1%) from LNMs, and 1 from liver metastasis (1.6%). In 5 patients, we find 6 LNMs that reseed 2 or more LNMs. We summarize 3 diverse modes of metastasis in CRC and show that skip spreading of tumor cells within the lymphatic network is common. Our study sheds light on the complicated metastatic pattern in CRC and has great clinical implications.
Exogenous chemicals may produce DNA methylation that is potentially toxic to living systems. Methylated DNA bases are difficult to detect with biosensors because the methyl group is small and chemically inert. In this report, a label-free photoelectrochemical sensor was developed for the selective detection of chemically methylated bases in DNA films. The sensor employed two DNA repair enzymes, human alkyladenine DNA glycosylase and human apurinic/apyrimidinic endonuclease, to convert DNA methylation sites in DNA films on indium tin oxide electrodes into strand breaks. A DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) was then used as the photoelectrochemical signal indicator to detect the DNA strand breaks. Its photocurrent signal was found to correlate inversely with the amount of 3-methyladenines (metAde) produced with a methylating agent, methylmethane sulfonate (MMS). The sensor detected the methylated bases produced with as low as 1 mM MMS, at which concentration the amount of metAde on the sensor surface was estimated to be 0.5 pg, or 1 metAde in 1.6 × 10(5) normal bases. Other DNA base modification products, such as 5-methylcytosine and DNA adducts with ethyl and styrene groups did not attenuate the photocurrent, demonstrating good selectivity of the sensor. This strategy can be utilized to develop sensors for the detection of other modified DNA bases with specific DNA repair enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.