Soil moisture content and soil porosity were measured in banana plantation under three tillage practices, including deep-tillage (DT), no-tillage (NT), and no-tillage plus straw cover (NTSC). In the experiments, the top layer soil was separated into three depth including 0~15 cm, 15~30 cm and 30 ~ 45 cm. The soil sampling were performed at four plant growth periods, including the stage of banana seedling (SBS), metaphase of banana (MB), the stage of pregnancy (SP) and pumping stage (PS). The results showed that: Among three depth of top layers, soil moisture content in 0~15 cm at four plant growth periods was lower than that in other two depth by three tillage practices. In 0~15 cm top layer soil, all the soil moisture at four plant periods by NTSC practice were highest. And all the soil moisture in soil treated by three tillage practices were increased with the plant growth. The soil porosity in this layer at SBS and MB stages by DT practice was significantly higher than that by NT and NTSC practices. In 15~30 cm layer soil, the soil moisture content and soil porosity at SBS stage was highest in the soil treated by DT practice compared to the that in soil treated by other two tillage practices. In 30~45 cm layer, the soil porosity at SBS stage by DT and NTSC practices were significantly lower than that by NT practice. At MB stage by DT practice it was significantly higher than that by other practices.
The chain transmission’s feature, the main failure form of roller chain and the research for the simulation of the chain transmission mechanism are introduced. Taking the simulation of the chain transmission mechanism in feeding system of a mechanical equipment as the research object, the kinematical properties and the affecting factors are analysed in this paper. It adopts the advanced connection pair to establish relationship between the sprocket-wheel and rollers, and realistically simulates the kinematical characteristics of the chain transmission mechanism. It provides a reference for the optimization design of the structure of the chain and sprocket wheel, through the analysis on the moving velocity and acceleration curve of the chain. It also provides a basis for verifying whether the chain and sprocket-wheel meet the design requirements or not.
On the basis of the design and calculation, motion analysis and structural analysis were carried out on hydraulic manipulator hand structure working in the radiation environment by using modeling and simulation technology. Concluded that the simulation results can be intuitive to inspect the kinematic characteristics of the manipulator hand structure, and provide the basis for the design of the control system.
In this paper, a 14-pole HTS filter is successfully designed and developed, which based on the reflected group delay method. The principle, design process, simulation are demonstrated. The filter is fabricated on a MgO substrate with double-sided DyBa2Cu3O7HTS thin films. The filter’s center frequency is 813.5MHz with a bandwidth of 15MHz, the return loss is better than 20dB.
The advantages and current problems for the application of high-speed machining technology in mold manufacturing are discussed. The requirements of mold high-speed machining for tool paths are summarized. Using the software of Cimatron E7.0,the NC program of the outer mold for a car engine’s V8 intake manifold is analyzed and optimized designed. Programming technology and optional of cutters have been introduced in detail. In the high speed milling stages, using the new cutters, the hardened mold can be machined to reach the required size, shape and surface roughness, and the machining time is reduced greatly. The method of making high speed NC template based on the software Cimatron E7.0. is introduced. Using this method, the maching efficiency is improved greatly, and the mold’ s surface quality better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.