Ginseng is the main Chinese herbal medicine for tonifying Qi and invigorating the spleen. It has been used to treat spleen‐qi deficiency with good protective effects for thousands of years, however, its biological mechanism has not been fully elucidated. This study aims to explore the mechanism of ginseng in the treatment of spleen‐qi deficiency by using a comprehensive method combining metabolomics and network pharmacological analysis. Gas chromatography‐mass spectroscopy was applied for investigating the changes in urine metabolites in spleen‐qi deficiency rats and after treatment with ginseng. Metabolomics and network pharmacology analysis were applied to screen potential biomarkers and therapeutic targets of ginseng in the treatment of spleen‐qi deficiency, respectively. Molecular docking was employed to further evaluate the docking mode of potential biomarkers and therapeutic target proteins. The results of metabolomics showed that the therapeutic effects of ginseng are mainly related to its regulation of three metabolic pathways. The molecular structure of potential biomarkers and common proteins was further analyzed by molecular docking to verify its effectiveness. Ginseng has good pharmacological effects by controlling key targets of related metabolic pathways, signal pathways, and potential biomarkers.
Patients with a spleen-qi deficiency often exhibit dysfunction in the metabolic system. Metabolites are considered the most direct reflection of individual physiological and pathological conditions and represent attractive candidates to provide deep insights into disease phenotypes. This study examines the potential therapeutic mechanism of wild ginseng on spleen-qi deficiency through the analysis of serum and urine metabolomics using rapid-resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. The reasons for the superiority of wild ginseng treatment over cultivated ginseng were also analyzed in depth. After wild ginseng intervention, anandamide, urobilinogen, aldosterone, and testosterone glucuronide were significantly reduced in serum. Meanwhile, argininosuccinic acid, L-cysteine, and seven other metabolites were significantly elevated in serum. Nine metabolites, including Lacetylcarnitine, and citrulline were elevated in the urine, and trimethylamine N-oxide, adrenic acid, and 10 other metabolites were reduced. Arginine biosynthesis, pantothenate and CoA biosynthesis, thiamin metabolism, taurine, and tryptophan metabolism pathways were mainly improved. Further analysis was conducted on the relationship between Lactobacillus and Akkermansia bacteria with metabolites, and it was found that they are mainly related to amino acid metabolites. This study provides strong theoretical support and direction for further explanation of the immune mechanism of wild ginseng and lays the foundation for future studies.
This study investigated the mechanism of characteristic non-volatile organic compounds (NVOCs) from ginseng Huang jiu (GH) in the treatment of alcoholic liver disease through UPLC-Q-Orbitrap-HRMS and network pharmacological analyses. Changes in NVOC contents in ginseng Huang jiu and ginseng-soaked wine fermented by different processing technologies were analyzed through liquid chromatography–mass spectrometry (LC-MS). A total of 96 ginsenosides were identified in ginseng Huang jiu throughout the fermentation process, which included 37 protopanaxadiol-type ginsenosides, 47 protopanaxatriol-type ginsenosides, and 4 oleanolic acid-type ginsenosides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that 20(R)-Rg2, Gypenoside XVII, 20(S)-Rf3, CK, Rg5, Rh2, and other rare ginsenosides in ginseng Huang jiu could be the potential index for determining ginseng Huang jiu. In addition, ginseng Huang jiu could improve alcoholic liver disease by regulating the GSTP1, HRAS, AKR1B1, GSTA1, Androgen receptor (AR), GSR, and LDHB genes through bioinformatics analysis. This study provides new insights into improving the industrial production of ginseng Huang jiu and treating alcoholic liver disease with medicinal and food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.