The formation of hierarchical architectures is of fundamental importance and yet a relatively elusive problem concerning many natural and industrial processes. In this paper, a nanopost array platform, or a nanopost substrate, has been developed to address this issue through a model study of the drying structures of phosphate buffered saline (PBS) solution. Unlike on a plain surface, highly ramified salt structures are formed by simply allowing the nanopost substrate wetted with the salt solution to dry, a process that completes within minutes at room temperature. The branches of salt structures have similar shapes repeating at different length scales, ranging from ∼200 nm up to a few centimeters in length, covering a 2 × 2 cm(2) area patterned with nanoposts fabricated in photoresist via laser interference lithography (LIL). Scanning electromicrograph (SEM) images show that salt structures are formed around nanoposts, and characteristic features of these salt structures can be modulated and predicted based on the surface properties and geometrical arrangements of nanoposts, suggesting that nanoposts can be used to guide the organization and crystallization of salts. This nanopost-guided crystallization approach is robust, rapid, versatile, and amenable to real-time observation and mass production, providing a great opportunity for the study and creation of large-scale hierarchical structures.
Nanopost arrays are generally used in applications of reflection gratings and in changing material surface wettability. Nanopost arrays can be used as a passive component to induce dendritic self-organized hierarchical architectures. In this study, through the use of a phase-field model, we performed a three-dimensional numerical simulation to demonstrate that nanopost structures affect the expanding speed of the surface of a dendritic self-organized structure in the growing path of a hierarchical structure. Additionally, we demonstrated that the nanopost array arrangement on the surface changed the hierarchical structure branching. Finally, introducing an externally applied force to the system enabled the use of a nanopost as an active component. Nanopost surroundings were determined to significantly affect the final distribution of dendritic structures and induce hierarchical structures after an external force was introduced to the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.