Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to the upper and middle parts of intestine, the activities of sucrase in the lower parts of intestine remained significantly higher after two weeks of EOS treatment. These results indicate that EOS may improve exaggerated postprandial spikes in blood glucose and glucose homeostasis since it inhibits intestinal sucrase and thus delays carbohydrate absorption, although clinical trials are needed.
We aimed to evaluate the effect of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. This study was a randomized, double-blind, placebo-controlled clinical trial. Subjects with prediabetes were randomly assigned to the GO2KA1 intervention group or the placebo group for 12 weeks. We assessed the serum levels of glucose, insulin, and C-peptide by a 2 hour value in the 75 g oral glucose tolerance test (OGTT), HbA1c, pro-inflammatory cytokines, and plasma adiponectin at baseline and after the 12 week intervention. The treatment group showed a significant decrease in the serum glucose level at 30 min (p = 0.013) and at 60 min (p = 0.028). The change of the serum glucose level at 60 min was significant in the treatment group compared with the placebo group (p = 0.030). Also, the plasma level of HbA1c (p = 0.023) and the pro-inflammatory cytokines (IL-6 and TNF-α) were reduced and plasma adiponectin was increased in the GO2KA1 intervention group after the 12 week treatment. However, the placebo group did not show any significant changes in these biomarkers. In subjects with prediabetes, 12 week supplement with GO2KA1 may help control postprandial glucose compared with control.
BackgroundA robotic deep inferior epigastric perforator (DIEP) flap created through a totally extraperitoneal approach minimizes violation of the donor site, which may lead to postoperative pain reduction and rapid recovery. The authors compared the clinical outcomes of robotic and conventional DIEP flap breast reconstructions.MethodsData from consecutive patients who underwent mastectomy with DIEP flaps for breast reconstruction between July 2017 and January 2021 were retrospectively reviewed. Patients were divided into robotic and conventional DIEP groups, and the two groups were matched using the inverse probability of treatment weighting method. They were compared based on the reconstruction time, drainage amount, postoperative pain, rescue analgesics, hospital stay, complications, and BREAST-Q scores.ResultsAfter matching, a dataset of 207 patients was formed, including 21 patients in the robotic DIEP group and 186 patients in the conventional DIEP group. The mean reconstruction time was longer in the robotic DIEP group than in the conventional DIEP group (P<0.001). In the robotic group, pain intensity during the postoperative 6–24 hours was significantly reduced (P=0.001) with less use of fentanyl (P=0.003) compared to the conventional DIEP group. The mean length of hospital stay for the robotic DIEP group was shorter than that for conventional DIEP (P=0.002). BREAST-Q scores indicated a higher level of the abdominal physical well-being domain in the robotic group (P=0.020). Complication rates were comparable between the two groups.ConclusionsThis study suggests that a robotic DIEP flap offers enhanced postoperative recovery, accompanied by a reduction in postoperative pain and hospital stay.
BackgroundThe antidiabetic and hypoglycemic effects of chitosan have been reported in previous studies. We have previously shown that chitosan oligosaccharide reduces postprandial blood glucose levels in vivo. We conducted a short-term crossover study to support the results of the previous study.MethodsThe study was a randomized, double-blind, controlled crossover trial completed at one clinical research site. Subjects with impaired glucose tolerance and impaired fasting glucose and healthy subjects were randomly assigned to consume one of two different experimental test capsules that differed in only the sample source (GO2KA1 vs placebo), and all subjects were instructed to consume the 75 g sucrose within 15 min. After a 7-day interval, the subjects consumed the other capsules that were not consumed on the first day. We assessed blood glucose levels using a 2-h oral sucrose tolerance test. The study was registered at clinicaltrials.gov (NCT03650023).ResultsThe test group showed significantly lower blood glucose levels at 60 min (p = 0.010) and postprandial blood glucose areas under the curve (p = 0.012). The change in blood glucose levels at 60 min was significantly lower in the test group than in the placebo group (p = 0.017).ConclusionsBased on the results of this study, the consumption of chitosan oligosaccharide (GO2KA1) supplements with a meal can effectively reduce postprandial blood glucose levels, which is relevant to the prevention of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.