An experimental study of the electronic structure of copper intercalated titanium dichalcogenides in a wide range of copper concentrations (x = 0.04-0.8) using x-ray photoelectron spectroscopy, resonant photoelectron spectroscopy, and x-ray absorption spectroscopy has been performed. Shift towards low energies of the Ti 2p and Se 3d core level spectra and a corresponding decrease in the photon energy of Ti 2p absorption spectra with the increase in copper concentration have been found. These sign-anomalous shifts may be explained by the shielding effect of the corresponding atomic shells as a result of the dynamic charge transfer during the formation of a covalent chemical bond between the copper atoms and the TiSe2 matrix.
An experimental study of the electronic structure of VTiSe system in a wide range of vanadium concentrations (x = 0.06-0.9) using x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy has been performed. The partial charge transfer from the VSe to TiSe structural fragments is experimentally observed, and the most part of the charge is localized on the vanadium atoms in the VSe structural fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.