The effect of the presence of protozoa on the composition of rumen bacteria was investigated in cattle. Seven castrated Holstein cattle were divided into two groups: four faunated and three unfaunated, and 16S ribosomal RNA gene (rDNA) clonal libraries were constructed. A total of 312 clones were sequenced across 1,500 bp. The 151 sequences of the faunated cattle were classified into 98 operational taxonomic units (OTUs) having at least 97% similarity. The sequences derived from the faunated cattle were classified into Firmicutes (59.7%), Bacteroidetes (34.4%), Spirochaetes (2.6%), Actinobacteria (2.0%), and Proteobacteria (1.3%). Bacteroides and Prevotella (34.4%) were the major groups in the faunated cattle. The 161 sequences in the unfaunated cattle were classified into 72 OTUs. The sequences derived from the unfaunated libraries were classified into Firmicutes (65.7%), Bacteroidetes (31.1%), Proteobacteria (1.9%), and Spirochaetes (1.2%). The Clostridium botulinum group and its relatives (36.0%) were the major groups in the unfaunated cattle. An analysis by the computer program LIBSHUFF clarified that the presence of ruminal protozoa markedly affected the composition of rumen bacteria.
The phylogenetic diversity of the fecal bacterial community in Holstein cattle was determined by 16S ribosomal RNA gene sequence analysis. The sequences were affiliated with the following phyla: Firmicutes (81.3%), Bacteroidetes (14.4%), Actinobacteria (2.5%), and Proteobacteria (1.4%). The Clostridium leptum subgroup was the most phylogenetically diverse group in cattle feces. In addition, a number of previously uncharacterized and unidentified bacteria were recognized in clone libraries.Key words: cattle; fecal bacteria; 16S rRNA gene library; phylogenetic analysisThe microbial ecology of intestinal tract ecosystems is composed of a large number of bacteria and a complex community. It is not only rumen bacteria and indigenous intestinal bacteria that play an important role in the health of the host cattle; it is also known that intestinal microbiota can significantly be influenced by diet, the host, and the environment. Fecal bacteria in cattle have been analyzed using culture methods.
A real-time PCR approach was used in this study to clarify the populations of major bacterial species in the rumens of faunated and unfaunated cattle. The sensitivity of this novel real-time PCR assay was evaluated by using 10(1) to 10(8) plasmid copies of target bacteria. The numbers of plasmid copies of Ruminococcus albus, Ruminococcus flavefaciens, Prevotella ruminicola, and the CUR-E cluster were higher in the unfaunated than in the faunated rumens. The CUR-E cluster belongs to the Clostridium group. In contrast, Fibrobacter succinogenes was higher in the faunated than in the unfaunated rumens. Although it is well known that an absence of protozoa brings about an increase in the bacterial population, it was clarified here that an absence of protozoa exerted differential effects on the populations of cellulolytic bacteria in cattle rumens (i.e., F. succinogenes, R. albus, and R. flavefaciens). In addition, real-time PCR analysis suggested that the CUR-E cluster was more prevalent in the unfaunated rumens.
The influence of rumen protozoa on the composition of rumen methanogens was studied by using seven growing Holstein cattle divided into two groups: four faunated and three unfaunated. 16S ribosomal RNA gene (rDNA) and methyl coenzyme-M reductase (MCR) α subunit (mcrA) gene clonal libraries were constructed. The results of each analysis showed that Methanobacteriales was dominant in the rumen of both groups. By mcrA gene analysis, 22.1% of unfaunated clones were classified into unfaunated group 1, which was not detected from faunated cattle. The 16S rRNA gene analysis showed that the number of operational taxonomic units was higher in unfaunated than faunated cattle, suggesting the diversity of methanogens tended to be higher by the removal of protozoa. The results of the LIBSHUFF program indicated that the 16S rRNA gene and mcrA gene clone libraries for the faunated group differed from those for the unfaunated group (P = 0.001). It was suggested that the presence of protozoa strongly affected the composition of rumen methanogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.