The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation.
BACKGROUND Recently, robotic surgery has been introduced in many hospitals. The structure of robotic instruments is so complex that updating their cleaning methods is a challenge for healthcare professionals. However, there is limited information on the effectiveness of cleaning for instruments for robotic surgery. OBJECTIVE To determine the level of residual contamination of instruments for robotic surgery and to develop a method to evaluate the cleaning efficacy for complex surgical devices. METHODS Surgical instruments were collected immediately after operations and/or after in-house cleaning, and the level of residual protein was measured. Three serial measurements were performed on instruments after cleaning to determine the changes in the level of contamination and the total amount of residual protein. The study took place from September 1, 2013, through June 30, 2015, in Japan. RESULTS The amount of protein released from robotic instruments declined exponentially. The amount after in-house cleaning was 650, 550, and 530 µg/instrument in the 3 serial measurements. The overall level of residual protein in each measurement was much higher for robotic instruments than for ordinary instruments (P<.0001). CONCLUSIONS Our data demonstrated that complete removal of residual protein from surgical instruments is virtually impossible. The pattern of decline differed depending on the instrument type, which reflected the complex structure of the instruments. It might be necessary to establish a new standard for cleaning using a novel classification according to the structural complexity of instruments, especially for those for robotic surgery. Infect Control Hosp Epidemiol 2017;38:143-146.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.