The regenerating skeletal muscle environment is capable of inducing uncommitted progenitors to terminally differentiate. The aim of this work was to determine whether adipose tissue-derived stromal cells were able to participate in muscle regeneration and to characterize the effect on muscle mass and functional capacities after transplantation of these cells. Adipose tissue stromal cells labeled with Adv cyto LacZ from 3-day-old primary cultures (SVF1) were autotransplanted into damaged tibialis anterior muscles. Fifteen days later, β-galactosidase staining of regenerated fibers was detected, showing participation of these cells in muscle regeneration. Two months after SVF1 cell transfer, muscles were heavier, showed a significantly larger fiber section area, and developed a significantly higher maximal force compared with damaged control muscles. These results are similar to those previously obtained after satellite cell transplantation. However, SVF1 transfer also generated a small amount of adipose tissue localized along the needle course. To minimize these adipose contaminants, we transferred cells from 7-day-old secondary cultures of the SVF1, containing only a small proportion of already engaged preadipocytes (SVF2). Under these conditions, no adipose tissue was observed in regenerated muscle but there was also no effect on muscle performances compared with damaged control muscles. This result provides further evidence for the existence of progenitor cells in the stromal fraction of freshly isolated adipose tissue cells, which, under our conditions, keep some of their pluripotent properties in primary cultures.
Denervation of skeletal muscle results in rapid atrophy with loss of contractile mass and/or progressive degeneration of muscle fibers which are replaced to a greater or lesser degree by connective and fatty tissues. In this study, we show that denervated rabbit muscles are transformed into a white adipose tissue, depending on their fiber types. This tissue does express LPL, G3PDH and particularly the ob gene, a white adipose tissue-specific marker, and does not express the brown adipose tissue molecular marker UCP1 mRNA.z 1998 Federation of European Biochemical Societies.
Secreted Frizzled-related proteins (Sfrps) are extracellular regulators of Wnt signalling and play important roles in developmental and oncogenic processes. They are known to be upregulated in regenerating muscle and in myoblast cultures but their function is unknown. Here, we show that the addition of recombinant Sfrp1 or Sfrp2 to C2C12 cell line cultures or to primary cultures of satellite cells results in the inhibition of myotube formation with no significant effect on the cell cycle or apoptosis. Even though at confluence, treated and untreated cultures are identical in appearance, analyses have shown that, for maximum effect, the cells have to be treated while they are proliferating. Furthermore, removal of Sfrp from the culture medium during differentiation restores normal myotube formation. We conclude that Sfrp1 and Sfrp2 act to prevent myoblasts from entering the terminal differentiation process.
Skeletal muscle demonstrates a force deficit after repair of injured peripheral nerves. We tested the hypothesis that transplantation of satellite cells into reinnervated rabbit tibialis anterior (TA) muscles improves their properties. Adult rabbits underwent transection and immediate suture of the common peroneal nerve. In order to provide an environment favorable for cell transplantation, TA were then made to degenerate by cardiotoxin injection, either immediately or after a 2-month delay, which is sufficient for muscle reinnervation. In both cases, the injured TA were transplanted with cultured satellite cells 5 days after induction of muscle degeneration. When cells were transferred immediately after nerve repair, drastic morphological and functional muscle alterations were observed. However, when the muscles were allowed to become reinnervated before cell transplantation, muscles were heavier and developed a significantly higher maximal force compared to denervated-reinnervated muscles. Thus, application of the cell therapy protocol improved properties of denervated muscles only when they were allowed to become innervated. These results, which represent the application of cell therapy to improve force recovery of reinnervated muscles, will be of significant interest in certain clinical contexts, particularly after immediate or delayed muscle reinnervation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.