dielectric from Polarimetric Synthetic Aperture Radar (dPSAR) method using the PolSAR image by inverting the µ r , in addition to ε r parameters, that served as capability of the ground surface responds to the magnetic field. Measurement of µ r in the field using Ferromaster Magnetic Permeability Meter was carried out to analyze the accuracy of the inverted µ r from the dPSAR method. According to the validation test of µ r derived from dPSAR and field measurement, a high coefficient determination R 2 about 0.73 was achieved. In addition, the normality test showed that residual values were distributed normally. Therefore, the µr inversion using dPSAR method has the potential to be developed and applied for advanced physical surface geological mapping.
Upflow zone identification at volcanic fields is crucial for geothermal resource exploration. The common problem to identify the upflow zone using conventional mapping method is time-consuming and the limitation of access to the area. The application of satellite imaging as ground-truthing is aimed to increase the effectiveness of upflow zone detection at geothermal fields. This study selected the volcanic field around the Bandung Basin for a model case. The data used in this study were thermal images of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Thermal Infrared Radiometer (TIR) by the night observations. The TIR data were corrected and calibrated by Visible Near Infrared Radiometer (VNIR) to measure Land Surface Temperature (LST). We then focused our analysis around a volcanic area that showed high LST at the Papandayan crater and other manifestations. Validations were carried out by measuring surface temperature and gas concentrations including SO2 and CO2. The reading value of the gases was different on each location, but the pattern of the gases was relatively similar especially the SO2 gas pattern. The SO2 gas showed a relatively constant trend of gas concentration over time in the upflow zone, but in the outflow zone showed an increase pattern with the time whose reading values were lower than those on the upflow. On the contrary, the non-geothermal features showed that the SO2 concentration decreased with the time towards almost 0. According to the retrieved LST, the surface manifestations were located not only at the high anomaly but also at medium anomaly depending on the manifestation dimension. The gas and temperature measurements proved that LST could be used to enhance the effectiveness of upflow zone identification.
Gas emission in volcanic areas is one of the features that can be used for geothermal exploration and to monitor volcanic activity. Volcanic gases are usually emitted in permeable zones in geothermal fields. The use of thermal infrared radiometers (TIR) onboard of advanced spaceborne thermal emission and reflection radiometers (ASTER) aims to detect thermal anomalies at the ground surface related to gas emissions from permeable zones. The study area is located around Bandung Basin, West Java (Indonesia), particularly the Papandayan and Domas craters. This area was chosen because of the easily detected land surface temperature (LST) following emissivity and vegetation corrections (Tcveg). The ASTER TIR images used in this study were acquired by direct night and day observation, including observations made using visible to near-infrared radiometers (VNIR). Field measurements of volcanic gases composed of SO2 and CO2 were performed at three different zones for each of the craters. The measured SO2 concentration was found to be constant over time, but CO2 concentration showed some variation in the craters. We obtained results suggesting that SO2 gas measurements and Tcveg are highly correlated. At Papandayan crater, the SO2 gas concentration was 334.34 ppm and the Tcveg temperature was 35.67 °C, results that are considered highly anomalous. The same correlation was also found at Domas crater, which showed an increased SO2 gas concentration of 35.39 ppm located at a high-anomaly Tcveg of 30.65 °C. Therefore, the ASTER TIR images have potential to identify volcanic gases as related to high Tcveg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.