Swift heavy ion (SHI) irradiation of amorphous Si (a-Si) at non-perpendicular incidence leads to non-saturable plastic flow. The positive direction of flow suggests that a liquid phase of similar density to that of the amorphous solid must exist and accordingly a-Si behaves like a conventional glass under SHI irradiation. For room-temperature irradiation of a-Si, plastic flow is accompanied by swelling due to the formation of voids and a porous structure. For this paper, we have investigated the influence of SHI irradiation at room temperature on amorphous Ge (a-Ge), the latter produced by ion implantation of crystalline Ge substrates. Like a-Si, positive plastic flow is apparent, demonstrating that liquid polymorphism is common to these two semiconductors. Porosity is also observed, again confined to the amorphous phase and the result of electronic energy deposition. Enhanced plastic flow coupled with a volume expansion is clearly responsible for the structural modification of both a-Si and a-Ge irradiated at room temperature with swift heavy ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.