Kültürel peyzaj değerleri görsel peyzajı belirleyen en önemli öğelerden biridir. Çevre peyzajının zamana bağlı olarak değişiminde; yöre insanının yaptığı faaliyetler yani o bölgenin kültürü etkilidir. Bu nedenle kültürel peyzaj her bölgeye göre farklılık gösterir. Bir bölgede yapılan faaliyetlerin niteliği ve alanın kullanımı bölgenin geleceği için çok önemlidir. Alanın çevresel peyzajını etkileyen en önemli kültürel faktörlerden biri de tarımsal üretimdir. Tarımsal üretim arazi şeklini, alan kullanımını ve bunlara bağlı olarak görsel peyzajı değiştirirken, görsel etki de mevsimlere bağlı olarak değişecektir. Karabiga beldesi, Biga ilçesindeki ilk yerleşim yerlerinden olması nedeni ile tarım kültürü açısından çok eskidir. Marmara Denizi'nin güneybatısında, Anadolu toprakları kıyısında bulunan belde, bağları, bahçe bitkileri ve şarap üretimi ile ünlüdür. Bu çalışmanın amacı, ilk yerleşiminden bugüne tarımsal üretimin etkin olduğu Karabiga bölgesinin tarımsal kültürel miras olarak belirlenmesinin sağlanmasıdır. Çalışma yönteminde Karabiga’ nın tarım arazilerinin karakterleri, yerleri ve değişimleri, tarımsal faaliyet türleri, önemli yerel ürünler çevre ile ilişkili olarak analiz edilmiştir. Çalışma sonucunda; bölgede tarımsal faaliyetlerin gittikçe terk edilerek sanayi yatırımlarının artmakta olduğu belirlenmiştir. Bölgede tarımsal kültür açısından üretimi yapılan en önemli ürünler belirlenmiştir. Bunların geleneksel üretim ve kullanım yöntemlerinin gelecek nesiller için miras olarak bırakılması önerilmiştir.
Diabetes mellitus and obesity are very similar in terms of pathogenesis and pathophysiology. Most obese patients have adipose tissue dysfunction caused by genetic and environmental factors. Adipose tissue is the source of adipokines secreted from adipocytes. Vaspin (visceral adşpose tissue-derived serine protease inhibitor), Visfatin (pre-B cell enhancing factor) and Chemerin are adipokines discovered in recent years. The study consists of 43 non-diabetic obese and 51 diabetic obese individuals. The PCR-RFLP method and agarose gel electrophoresis techniques were used to detect gene polymorphisms of Chemerin rs17173608, Vaspin rs2236242 and Visfatin rs2110385 from DNA samples. In our study, when diabetic obese and non-diabetic obese patient groups were examined in terms of Vaspin gene polymorphism, statistically significant results were obtained (22% → 7%, p=0.048, respectively). The distribution of Chemerin or Visfatin gene variants were not different in study groups (p>0.05). Our results indicate that Chemerin rs17173608 and Visfatin rs2110385 gene polymorphisms were not risk factors for development of diabetes in obese individuals, however, Vaspin rs2236242 gene polymorphism may be a contributory risk of development of diabetes in obese individuals.
Generative Adversarial Networks (GANs) are increasingly applied to train generative models with neural networks, especially in computer vision studies. Since being introduced in 2014, many image generation studies incorporating GANs have demonstrated promising results for producing highly convincing fake images of animals, landscapes, and human faces. We build a GAN structure to generate realistic baby face images from a small data set of 673 color 200×200 pixel images obtained from a Kaggle data set by following previous studies that demonstrated how GANs could be used for image generation from a limited number of training samples. The reason we limit especially as baby faces is that we aim to achieve success with a limited number of training data. For evaluation, experiments and case studies are one of the most considered techniques. The results of this study help identify issues requiring further investigation in comment analysis research. In this context, we presented the loss values of the generator and discriminator during the training process. The discriminator losses are around of 0.7 and the generator is between 0.7 and 0.9. The high quality images are produced about 300th epochs.
Objectives Diabetes is a chronic group of metabolic disorders those generally present with hyperglycemia hence insulin synthesis defects due to multifactorial causes in beta cells in the Langerhans islets of the pancreas. In the development of diabetes, genetic predisposition is as important as environmental factors. As a result of polymorphism studies in diabetic patients, many genes were associated with the development of diabetes. In our study, we aimed to represent the relationship between diabetes and certain variants of the Ghrelin (GHRL), Fat mass and obesity-associated protein (FTO) and Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) genes which are generally associated with diabetes and obesity. Methods One-hundred type 2 diabetes mellitus (T2DM) patients and ninety-four healthy volunteers were enrolled in our study. GHRL (rs4684677), FTO (rs8044769) and PGC-1α (rs8192678) gene polymorphism studies were performed by the Real-Time PCR method. Results The carriers of the TT genotype for the FTO (rs8044769) and the GG genotype for the PGC-1α (rs8192678) variants were found more frequently in the patient group, while the GHRL (rs4684677) did not differ between the groups. For the PGC-1α (rs8192678) variant in the patient group, glucose and BMI levels were observed significantly higher in carriers of the GA genotype than those with the GG genotype. There was no statistical difference in the distribution of GHRL (rs4684677) alleles among the groups. Conclusions We conclude that the FTO (rs8044769) and PGC-1α (rs8192678) variants are associated with T2DM in the Turkish population. However, there is no association between GHRL (rs4684677) and T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.