The capability to estimate monsoon rainfall is investigated by using S-band polarimetric radar (S-POL) and two-dimensional Video Disdrometer (2DVD) during 2017–2018 in South China. Based on 2 years of 2DVD raindrop size distribution (DSD) observations of monsoon precipitation systems, four different quantitative precipitation estimation (QPE) algorithms were obtained, including R(ZH), R(ZH, ZDR), R(KDP), and R(KDP, ZDR). In order to clearly demarcate the optimal ranges of the four QPE algorithms by considering the impact of the monsoon precipitation system of South China, the optimal ranges of the four QPE algorithms were integrated together according to the characteristics of different QPE algorithms in the reflectivity-differential reflectivity (ZH-ZDR) space distribution by reference to 8 monsoon rainfall events from 2016 to 2020 observed in Guangzhou and Yangjiang S-POL. Then, an optimal algorithm was proposed for the quantitative estimation of monsoon precipitation in South China (2DVD-SCM) using S-POL. The 2DVD-SCM was tested by comparing it with a traditional radar QPE algorithm PPS (WSR-88D Precipitation Processing System); a classical QPE algorithm CSU-HIDRO (Colorado State University-Hydrometeor Identification Rainfall Optimization) for the polarimetric radar; a piecewise fitting algorithm LPA-PFM (Piecewise Fitting Method) based on laser raindrop spectrum. The rainfall event one-by-one test results show that the 2DVD-SCM algorithm performs obviously better than the other three algorithms in most of the rainfall events. The hourly accumulated rainfalls estimated by the 2DVD-SCM algorithm are agreed well with rain gauge observations. The normalized errors (NE) and the root mean square errors (RMSE) values of 2DVD-SCM are remarkably less than the other three algorithms, and the correlation coefficient (CC) values are higher. The results of the classified rain rate test show that the NE and RMSE values of the 2DVD-SCM algorithm are the lowest in all classified rain rates. The overall evaluation results show that the 2DVD-SCM algorithm performs obviously better than the existing three algorithms and have the potential to apply in S-band polarimetric radar monsoon rainfall estimation operational system in South China.
A hailstorm with an inclined structure occurred in the western part of the South China coast on 27 March 2020. This study investigates the detailed evolution characteristics of this inclined structure using the Doppler radar data assimilation system (VDRAS) and the improved fuzzy logic hydrometeor classification algorithm (HCA). Obvious differential reflectivity (often referred to as ZDR) arc characteristics, ZDR column characteristics, and the specific differential phase (often referred to as KDP) of the column are observed using dual-polarization radar prior to hailfall. Both the ZDR column and KDP column reached their strongest intensities during the hailfall phase, with their heights exceeding the height of the −20 °C layer (7.997 km above ground level), displaying a cross-correlation coefficient (CC) valley during this phase. Meanwhile, two centers of strong reflectivity were found, with one (C1) being located at 2–4 km, and the other (C2) being located at 6–8 km. The maximum horizontal distance between the two centers is 8 km, suggesting a strongly inclined structure. This inclined structure was closely related to the interaction between upper-level divergent outflows and ambient horizontal winds. The updraft on the front edge of the hailstorm continued to increase, keeping C2 at the upper level. At the same time, large raindrops at the lower part of C2 are continuously lifted, leading to ice formation. These ice particles then fell obliquely from their high altitude, merging with C1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.