A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.
This study discusses a smart radar antenna scanning mode that combines features of both the sector-scan mode used for conventional radar and the line-scan mode used for synthetic aperture radar (SAR) and achieves an application of the synthetic aperture technique in the conventional sector-scan (mechanically scanned) radar, and we refer to this mode as sector-scan synthetic aperture radar (SSAR). The mathematical model is presented based on the principle of SSAR, and a signal processing algorithm is proposed based on the idea of two-dimensional (2D) matched filtering. The influences of the line-scan range and speed on the SSAR system are analyzed, and the solution to the problem that the target velocity is very high is given. The performance of the proposed algorithm is evaluated through computer simulations. The simulation results indicate that the proposed signal processing algorithm of SSAR can gather the signal energy of targets, thereby improving the ability to detect dim targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.