BackgroundThe effect of amylases combined with exogenous carbohydrase and protease in a newly harvested corn diet on starch digestibility, intestine health and cecal microbiota was investigated in broiler chickens.MethodsTwo hunderd and eighty-eight 5-day-old female chickens were randomly divided into six treatments: a newly harvested corn-soybean meal diet (control); control supplemented with 1,500 U/g α-amylase (Enzyme A); Enzyme A + 300 U/g amylopectase + 20,000 U/g glucoamylase (Enzyme B); Enzyme B + protease 10,000 U/g (Enzyme C); Enzyme C + xylanase 15,000 U/g (Enzyme D); and Enzyme D + cellulase 200 U/g + pectinase 1,000 U/g (Enzyme E). Growth performance, starch digestibility, digestive organ morphology, and intestinal microbiota were evaluated in the birds at 16 and 23 d of age.ResultsCompared with the control diet, supplementation with Enzyme A significantly decreased ileum lesion scoring at 16 d of age (P < 0.05); supplementation with Enzyme B or Enzyme C showed positive effects on ileal amylopectin and total starch digestibility (P < 0.05); Broilers fed with a diet supplemented with Enzyme D had a tendency to decrease body weight gain at 23 d. Enzyme E supplementation improved lesion scoring of jejunum and ileum at 16 d (P < 0.05), and increased ileal amylopectin or total starch digestibility at 23 d (P < 0.05). Supplementation of enzymes changed cecal microbiota diversity. High numbers of Campylobacter, Helicobacter and Butyricicoccus, Anaerostipes and Bifidobacterium, Sutterella and Odoribacter were the main genera detected in supplementations with Enzymes B, C, D, and E respectively.ConclusionsSupplementation with amylase combined with glucoamylase or protease showed a beneficial effect on starch digestibility and intestinal microbiota diversity, and increased growth of broilers fed with newly harvested corn.Electronic supplementary materialThe online version of this article (10.1186/s40104-018-0238-0) contains supplementary material, which is available to authorized users.
Arabinoxylan (AX) is the major antinutritional factor of wheat. This study evaluated the synergistic effects of xylanase and debranching enzymes (arabinofuranosidase [ABF] and feruloyl esterase [FAE]) on AX. During in vitro tests, the addition of ABF or FAE accelerated the hydrolysis of water-soluble AX (WE-AX) and water-insoluble AX (WU-AX) and produced more xylan oligosaccharides (XOS) than xylanase alone. XOS obtained from WE-AX stimulated greater proliferation of Lactobacillus brevis and Bacillus subtilis than did fructo-oligosaccharides (FOS) and glucose. During in vivo trials, xylanase increased the average daily growth (ADG), decreased the feed-conversion ratio (FCR), and reduced the digesta viscosity of jejunum and intestinal lesions of broilers fed a wheat-based diet on day 36. ABF or FAE additions further improved these effects. Broilers fed a combination of xylanase, ABF, and FAE exhibited the best growth. In conclusion, the synergistic effects among xylanase, ABF, and FAE increased AX degradation, which improve the growth performance and gut health of broilers.
This study was designed to compare the effect of methionine (Met) sources (DL-methionine [DLM] and DL-2-hydroxy-4-methylthio-butanoic acid [HMTBa]) and their supplementation levels on broiler growth performance and redox state. A 2 × 2 factorial arrangement was used with 2 sources (DLM and HMTBa) and 2 supplementation levels (0.05% and 0.25%) of Met. A total of 480 one-day-old broiler chicks were randomly divided into 4 treatments with 8 replicates per treatment (15 birds per replicate). The experiment lasted for 21 d. Broiler growth performance, redox capacity, redox-related genes expression, and Met transporters in different tissues were tested. Broilers fed high Met supplementation levels had improved (P < 0.05) body weight (BW), average daily gain (ADG) and feed conversion ratio (FCR). Similarly, broilers fed high Met levels had better (P < 0.05) antioxidant abilities in the serum, small intestine, and liver. Whereas, interactive effects (P < 0.05) were also observed between Met sources and levels. Compared with DLM, birds fed HMTBa diets had decreased (P < 0.05) total glutathione (T-GSH) and oxidized glutathione (GSSG) contents in duodenum, ileum, and liver. Similarly, broilers fed HMTBa supplemented diets had increased (P < 0.05) thioredoxin (Trx) gene expression in the duodenum and ileum, but decreased (P < 0.05) glutaredoxin (Grx), glutathione reductase (GSR), and glutathione synthetase (GSS) genes expression. Furthermore, lower gene expression of Na+ and Cl− dependent neutral and cationic amino acid transporter (ATB0, +), and Na+ dependent neutral amino acid transporter (B0AT) in the duodenum brush border, but higher gene expression of diamine acetyltransferase 1 (SAT1) and Na+-independent branched-chain and aromatic amino acid transporter (LAT1) in the jejunum and ileum basement membrane along with higher expression of the proton dependent monocarboxylate transporter 1 (MCT1) gene in the ileum were detected in birds fed HMTBa diets. In conclusion, DLM can be effectively used in glutathione synthesis to exert antioxidant functions, whereas HMTBa favors S-adenosylmethionine (SAM) synthesis and thus stimulates antioxidant-related genes expression.
Xylan oligosaccharides (XOS) are the hydrolysates of xylan. To compare the proliferation effect of XOS, glucose, fructo oligosaccharides (FOS), xylose, XOS, and a media without carbohydrate source (control) on Pediococcus acidilactici strain BCC-1, the de novo sequencing of Pediococcus acidilactici strain BCC-1 was conducted, and the underlying mechanism of prebiotic xylo oligosaccharide between xylose and XOS was revealed through transcriptomic analysis. Compared to FOS, glucose, and xylose, XOS exhibits a good performance in promoting the fermentation of Pediococcus acidilactici BCC-1. The genome of Pediococcus acidilactici BCC-1 revealed genes encoding XOS transportation and utilized related enzymes, including ATP-binding cassette (ABC) transporters, arabinofuranosidase, xylanase, xylosidase, xylose isomerase, and xylulose kinase. Transcriptome analysis showed that XOS treatment enhanced genes involving carbohydrate metabolism, an ABC transporter sugar system, pentose and glucuronate interconversions, pyruvate metabolism, and the TCA process when compared to xylose treatment. It suggested XOS treatment enhanced sugar absorption and utilization. These results are useful in the understanding of the metabolic pathway of XOS in Pediococcus acidilactici BBC-1 and may contribute to the optimization of the probiotic effect of Pediococcus acidilactici BCC-1 as novel complex feed additives.
Xylan oligosaccharides (XOS) can promote proliferation of Pediococcus acidilactic BCC-1, which benefits gut health and growth performance of broilers. The study aimed to investigate the effect of Pediococcus acidilactic BCC-1 (referred to BBC) and XOS on the gut metabolome and microbiota of broilers. The feed conversion ratio of BBC group, XOS group and combined XOS and BBC groups was lower than the control group (P < 0.05). Combined XOS and BBC supplementation (MIX group) elevated butyrate content of the cecum (P < 0.05) and improved ileum morphology by enhancing the ratio of the villus to crypt depth (P < 0.05). The 16S rDNA results indicated that both XOS and BBC induced high abundance of butyric acid bacteria. XOS treatment elevated Clostridium XIVa and the BBC group enriched Anaerotruncus and Faecalibacterium. In contrast, MIX group induced higher relative abundance of Clostridiaceae XIVa, Clostridiaceae XIVb and Lachnospiraceae. Besides, MIX group showed lower abundance of pathogenic bacteria such as Campylobacter. Metabolome analysis showed that all the 3 treatment groups (XOS, BBC and MIX) showed lower concentrations of sorbitol and both XOS and BBC group had higher concentrations of pyridoxine levels than CT group. Besides, XOS and BBC groups enhanced the content of hydroxyphenyl derivatives 4-hydroxyphenylpyruvate 1 and 3-(3-hydroxyphenyl) propionic acid, respectively (P < 0.05). Notably, MIX group enhanced both 4-hydroxyphenylpyruvate 1 and 3-(3-hydroxyphenyl) propionic acid (P < 0.05). Thus, XOS and BBC may have a synergistic role to improve the performance of broilers by modulating gut microbiota and metabolome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.