Populations of certain unicellular organisms, such as suspensions of yeast in nutrient solutions, undergo transitions to coordinated activity with increasing cell density. The collective behavior is believed to arise through communication by chemical signaling via the extracellular solution. We studied large, heterogeneous populations of discrete chemical oscillators (approximately 100,000) with well-defined kinetics to characterize two different types of density-dependent transitions to synchronized oscillatory behavior. For different chemical exchange rates between the oscillators and the surrounding solution, increasing oscillator density led to (i) the gradual synchronization of oscillatory activity, or (ii) the sudden "switching on" of synchronized oscillatory activity. We analyze the roles of oscillator density and exchange rate of signaling species in these transitions with a mathematical model of the interacting chemical oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.