The globally high prevalence of peripheral artery diseases poses a pressing need for biomaterials grafts to rebuild vasculature. When implanted, they should promote endothelial cells (ECs) adhesion both profoundly and selectively—but the latter expectation remains unfulfilled. Here, this work is inspired by fungi that invade blood vessels via the “bridge” of galectins that, secreted by ECs, can simultaneously bind carbohydrates on fungal surface and integrin receptors on ECs. A glucomannan decanoate (GMDE) substrate mimicking fungal carbohydrates that highly and preferentially supports ECs adhesion while rejecting several other cell types is designed. Electrospun GMDE scaffolds efficiently sequester endogenous galectin‐1—which bridges ECs to the scaffolds as it functions in fungal invasions—and promote blood perfusion in a murine limb ischemic model. Meanwhile, the application of GMDE requires no exogenous pro‐angiogenic agents and causes no organ toxicity or adverse inflammation in mice, highlighting its high safety of potential translation. This glycan material, uniquely mimicking a microbial action and harnessing a secreted protein as a “bridge,” represents an effective, safe, and different strategy for ischemic vascular therapy.
The human body cannot control blood loss without treatment. Available hemostatic agents are ineffective at treating cases of severe bleeding and are expensive or raise safety concerns. Bletilla striata serve as an inexpensive, natural, and promising alternative. However, no detailed studies on its hemostatic approach have been performed. The aim of this study was to examine the hemostatic effects of B. striata Micron Particles (BSMPs) and their hemostatic mechanisms. We prepared and characterized BSMPs of different size ranges and investigated their use as hemostatic agent. BSMPs of different size ranges were characterized by scanning electron microscope. In vitro coagulation studies revealed BSMP-blood aggregate formation via stereoscope and texture analyzers. In vivo studies based on rat injury model illustrated the BSMP capabilities under conditions of hemostasis. Compared to other BSMPs of different size ranges, BSMPs of 350–250 μm are most efficient in hemostasis. As powder sizes decrease, the degree of aggregation between particles and hemostatic BSMP effects declines. The BSMP in contact with a bleeding surface locally forms a visible particle/blood aggregate as a physical barrier that facilitates hemostasis. Considering the facile preparation, low cost, and long shelf life of B. striata, BSMPs offer great potential as mechanisms of trauma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.