a b s t r a c tTriterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components.
In order to develop a direct and reliable method for discovering lead compounds from traditional Chinese medicines (TCMs), a comparative online ligand fishing platform was developed using immobilized capillary enzyme reactors (ICERs) in combination with liquid chromatography-mass spectrometry (LC-MS). Methacrylate-based monolithic capillaries (400 μm I.D. × 10 cm) containing epoxy reactive groups were used as support to immobilize the target enzyme acetylcholinesterase (AChE). The activity and kinetic parameters of the AChE-ICER were investigated using micro-LC-UV. Subsequently, ligand fishing and identification from mixtures was carried out using the complete AChE-ICER-LC-MS platform. For efficient distinction of true actives from false positives, highly automated comparative analyses were run alternatingly using AChE-ICERs and negative control-ICERs, both online installed in the system. After washing unbound compounds to the waste, bound ligands were eluted from the AChE-ICER to a trapping loop using a denaturing solution. The trapped ligands were further separated and identified using LC-MS. Non-specific binding to the monolith support or non-functional sites of the immobilized enzyme was investigated by exposing analytes to the negative control-ICER. The specificity of the proposed approach was verified by analyzing a known AChE inhibitor in the presence of an inactive compound. The platform was applied to screen for AChE inhibitors in extracts of Corydalis yanhusuo. Eight compounds (columbamine, jatrorrhizine, coptisine, palmatine, berberine, dehydrocorydaline, tetrahydropalmatine and corydaline) with AChE binding affinity were detected and identified, and their AChE inhibitory activities were further verified by an in vitro enzymatic inhibition assay. Experimental results show that the proposed comparative online ligand fishing platform is suitable for rapid screening and mass-selective detection of AChE inhibitors in complex mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.