The doping of impurity ions into perovskite lattices has been scrupulously developed as a promising method to stabilize the crystallographic structure and modulate the optoelectronic properties. However, the photoluminescence (PL) of Fe2+-doped mixed halide perovskite NCs is still relatively unexplored. In this work, the Fe2+-doped CsPb(ClxBr1−x)3 nanocrystals (NCs) are prepared by a hot injection method. In addition, their optical absorption, photoluminescence (PL), PL lifetimes, and photostabilities are compared with those of undoped CsPb(Br1−xClx)3 NCs. We find the Fe2+ doping results in the redshift of the absorption edge and PL. Moreover, the full width at half maximums (FWHMs) are decreased, PL quantum yields (QYs) are improved, and PL lifetimes are extended, suggesting the defect density is reduced by the Fe2+ doping. Moreover, the photostability is significantly improved after the Fe2+ doping. Therefore, this work reveals that Fe2+ doping is a very promising approach to modulate the optical properties of mixed halide perovskite NCs.
Co(II) mononuclear complex with different coordination geometry would display various of field-induced single-ion magnet (SIM) behaviors. Here, we identify a field-induced single-ion magnet in a mononuclear complex Co(H2DPA)2·H2O (H2DPA = 2,6-pyridine-dicarboxylic acid) by the hydrothermal method. The long axial Co-O coordination bond (Co1‧‧‧O3) can be formed by Co1 and O3. Therefore, Co(II) ion is six-coordinated in a distorted elongated octahedron. AC magnetization susceptibilities show that the effective energy barrier is up to 43.28 K. This is much larger than most mononuclear Co(II). The distorted elongated octahedron caused by the axial Co-O coordination bond is responsible for the high effective energy barrier. The distribution of electron density in Co1 and O3 atoms in the long axial bond would influence the magnetic relaxation process in turn. Our work deepens the relationship between the effective energy barrier and the weak change of ligand field by long axial bonds, which would facilitate constructing SIM with high energy temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.