The mammalian circadian clock consists of a transcription–translation feedback loop (TTFL) composed of CLOCK–BMAL1 transcriptional activators and CRY–PER transcriptional repressors. Previous work showed that CRY inhibits CLOCK–BMAL1-activated transcription by a “blocking”-type mechanism and that CRY–PER inhibits CLOCK–BMAL1 by a “displacement”-type mechanism. While the mechanism of CRY-mediated repression was explained by both in vitro and in vivo experiments, the CRY–PER-mediated repression in vivo seemed in conflict with the in vitro data demonstrating PER removes CRY from the CLOCK–BMAL1–E-box complex. Here, we show that CRY–PER participates in the displacement-type repression by recruiting CK1δ to the nucleus and mediating an increased local concentration of CK1δ at CLOCK–BMAL1-bound promoters/enhancers and thus promoting the phosphorylation of CLOCK and dissociation of CLOCK–BMAL1 along with CRY from the E-box. Our findings bring clarity to the role of PER in the dynamic nature of the repressive phase of the TTFL.
MicroRNA-mediated post-transcriptional regulations are increasingly recognized as important components of the circadian rhythm. Here we identify microRNA let-7, part of the Drosophila let-7-Complex, as a regulator of circadian rhythms mediated by a circadian regulatory cycle. Overexpression of let-7 in clock neurons lengthens circadian period and its deletion attenuates the morning activity peak as well as molecular oscillation. Let-7 regulates the circadian rhythm via repression of CLOCKWORK ORANGE (CWO). Conversely, upregulated cwo in cwo-expressing cells can rescue the phenotype of let-7-Complex overexpression. Moreover, circadian prothoracicotropic hormone (PTTH) and CLOCKregulated 20-OH ecdysteroid signalling contribute to the circadian expression of let-7 through the 20-OH ecdysteroid receptor. Thus, we find a regulatory cycle involving PTTH, a direct target of CLOCK, and PTTH-driven miRNA let-7.
Taken together, the results indicate that the Drosophila insulin-like peptide system is a crucial regulator of sleep.
The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.
Sensory system plays important roles in a wide array of insect’s behavior and physiological events, including the host landing and locating, feeding, flying, sex responding, mating and oviposition which happen independently and in sequence. The armyworm Mythimna separata (Lepidoptera: Noctuidae) of migratory insect is destructive for alimentarn crop and economic crop throughout the world. Here we present the high throughput sequencing of the head transcriptome and identify members of the major sensory genes which are crucial for armyworm’s success worldwide, including 8 opsins, 22 chemosensory proteins, 50 odorant binding proteins, 60 odorant receptors, 8 gustatory receptors, 24 ionotropic receptors, and 2 sensory neuron membrane proteins. It is worth noting that a duplication of the LW opsin gene exists in this insect. Several genes were clustered with functionally validated genes, such as Co-receptors of OR and IR, PBPs, PRs, CO2 GRs, bitter GRs and sweet GRs, were also identified. The transcriptome gene library provided the basis for further studies that elucidate the fundamental molecular mechanism of biology and control in M. separata. Our research exhibits the first comprehensive catalogue of the sensory genes fundamental for success and distribution in M. separata, which are potential novel targets for pest control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.