Aim
Zoogeographical regionalizations have recently seen a revived interest, which has provided new insights into biogeographical patterns. However, few quantitative studies have focused on zoogeographical regions of China. Here, we analyse zoogeographical regions for terrestrial vertebrates in China and how these regions relate to environmental and geological drivers and evaluate levels of cross‐taxon congruence.
Location
China.
Methods
We applied hierarchical clustering and non‐metric multidimensional scaling ordination to βsim dissimilarity matrices to delineate zoogeographical regions of China, based on the species distribution of 2102 terrestrial vertebrates in 50 × 50 km grid cells. We used generalized linear models and deviance partitioning to investigate the roles of current climate, past climate change, vegetation and geological processes in shaping the zoogeographical regions. Finally, we used Mantel and Kruskal–Wallis tests to evaluate the levels of cross‐taxon congruence.
Results
Cluster analyses revealed 10 major zoogeographical regions: South China, the Yungui Plateau, Taiwan, North China, Northeast China, the Inner Mongolia Plateau, Northwest China, the Longzhong Plateau, the Tibetan Plateau and East Himalaya. In contrast to previous regionalizations, a major split was identified by clustering grid cell assemblages and dividing the eastern and western parts of China, followed by the northern part of China. Deviance partitioning showed that current climate and geological processes explained most of the deviance both jointly and independently. Congruence in species composition of endotherms and ectotherms was surprisingly low.
Main conclusions
We propose new zoogeographical regions for China based on our quantitative methods. In contrast to previous regionalizations, we consider Central China as a part of South China and identify the Longzhong Plateau and Taiwan as independent regions. While our results strongly support the notion of a broad biogeographical transition zone in East Asia, they also suggest a major south–north‐oriented Palaearctic‐Oriental boundary in China.
This paper presents an analysis at next-to-next-to-leading order in the theory of quantum chromodynamics for the determination of a new set of proton parton distribution functions using diverse measurements in pp collisions at $$\sqrt{s} = 7$$
s
=
7
, 8 and 13 TeV, performed by the ATLAS experiment at the Large Hadron Collider, together with deep inelastic scattering data from ep collisions at the HERA collider. The ATLAS data sets considered are differential cross-section measurements of inclusive $$W^{\pm }$$
W
±
and $$Z/\gamma ^*$$
Z
/
γ
∗
boson production, $$W^{\pm }$$
W
±
and Z boson production in association with jets, $$t\bar{t}$$
t
t
¯
production, inclusive jet production and direct photon production. In the analysis, particular attention is paid to the correlation of systematic uncertainties within and between the various ATLAS data sets and to the impact of model, theoretical and parameterisation uncertainties. The resulting set of parton distribution functions is called ATLASpdf21.
Fiber-reinforced polymer (FRP) has supreme resistance to corrosion and can be designed with optic fibers. FRP can be an alternative to steel reinforcement for concrete structures, and can serve as a sensor for smart concrete structures. Due to poor cracking control and bond performance, the limit of flexural capacity in the serviceability limit state has not been determined, which has obstructed the wider application of FRP bars in smart structures. In this study, in order to overcome these shortcomings, a new engineering cementitious composite (ECC) with superior tensile strain capacity was used to replace the cover around the FRP bars in the tensile zone. To investigate the anti-cracking performance of the new composite beam, seven simply supported beams were designed. In the preliminary investigation, the longitudinal FRP bars in these beams were designed without optic fibers to focus on the mechanical behavior. The beams were tested under four-point load and measured using the digital sensor technique, digital image correlation (DIC). The test results showed that introducing a new ECC layer on the tensile side improves the cracking control and flexural behavior (load capacity and deformability) of a FRP-reinforced sea sand and seawater concrete (SSC) beam, especially in the serviceability limit state. We demonstrate the new composite beam can steadily and fully improve the tensile capacity of FRP bars, which is the basis of using FRP bars as sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.