Background There has been increasing evidence showing that stingless bee honey exhibits anti-oxidant, anti-inflammatory and anti-cancer properties. Pharmacologically-active components in honey such as flavonoids and phenolic constituents are known to contribute to its medicinal benefits. To the best of our knowledge, this is the first study on evaluating anti-cancer effects of locally-produced Malaysian stingless bee honey from Heterotrigona itama sp. on malignant glioma cells. Methods Proliferation and apoptosis studies of U-87 MG cells following stingless bee honey treatment were carried out using MTS assay and acridine orange/propidium iodide dual staining, respectively. Results Results demonstrated time and dose-dependent cytotoxicity using 0.625%, 1.25% and 10% stingless bee honey ( P < 0.05). IC 50 values were calculated using cells treated with 10% stingless bee honey. It was also observed that 10% stingless bee honey induced nuclear shrinkage, chromatin condensation and nucleus fragmentation, indicating that cellular changes were consistent with the apoptotic characteristics of the cells. Conclusion These data provide a good basis for further evaluation of the medicinal properties of stingless bee honey from Heterotrigona itama sp. This source of honey may serve as a potential therapy for malignant glioma.
Mesenchymal stem cells (MSCs) are stromal origin cells with multilineage differentiation capacity. The immunoregulatory properties of MSCs can be interfered effectively by cytokines. Cytokines, produced by a broad range of cells, act at the systemic level to influence biological phenomena such as inflammation, wound healing, organogenesis and oncogenesis. Cytokines also play vital roles in the differentiation of MSCs into several cell lineages. This review summarizes on how cytokines can affect MSCs differentiation and their relative signaling pathways, which may serve to understand the possible underlying mechanisms. Also, this review reveals the potential clinical use of MSCs as promising therapeutic agents due to their special characteristics such as multipotent differentiation, immunomodulatory properties, and selfrestoration.
Glioblastoma multiforme (GBM) is one of the most common primary brain tumours in adults, accounting for almost 65% of all cases. Among solid tumours, GBM is characterised by strong angiogenesis, including the highest degree of vascular proliferation and endothelial cell hyperplasia. Despite numerous improvements in existing treatment approaches, the prognosis of GBM patients remains poor, with a mean survival of only 14.6 months. Growing evidence has shown significant overexpression of the ephrin type-A receptor 2 (EphA2) receptor in various malignancies, including GBM, as well as a correlation to poor prognoses. It is believed that EphA2 receptors play important roles in mediating GBM tumourigenesis, including invasion, metastasis, and angiogenesis. Despite the clinical and pathological importance of tumour-associated vasculature, the underlying mechanism involving EphA2 is poorly known. Here, we have summarised the current knowledge in the field regarding EphA2 receptors’ roles in the angiogenesis of GBM.
Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage. Clinical data on DSCs are still lacking to prove their restorative abilities despite extensive contemporary literature, warranting research to further validate their application for bone tissue engineering.
Dental pulp regeneration via stem cell engineering approach offers a great potential in tackling the difficulty in dental clinical situations such as teeth loss and periodontal diseases. One of the potential approaches in dental tissue engineering includes the application of dental stem cells-based therapy. In this approach, dental stem cells are generally cultured on special biodegradable membrane filters or scaffolds, allowing for three-dimensional (3D) pulp tissues formation before it can be inserted into the area of damaged dental pulp for dentin regeneration. The naturally derived scaffold, onto which stem cells are let to grow include platelet rich fibrin (PRF), collagen, hyaluronic acid (HA), polysaccharides, silk and amniotic membrane (AM). Biological scaffolds offer special characteristics such as biocompatibility, biodegradability, low immunogenicity and ability to support cells growth for various applications of tissue engineering. This review discusses the available naturally derived scaffolds for dental pulp regeneration and highlights their potential advantages. We also aim to improve the understanding of the application of natural scaffolds in dental pulp regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.