Treatment with the phytopreparation from papaya accelerated wound healing and reduced the severity of local inflammation in rats with burn wounds. The effect of this phytopreparation can be related to an increase in the effectiveness of intracellular bacterial killing by tissue phagocytes due to the inhibition of bacterial catalase. Antioxidant activity of the preparation decreases the risk of oxidative damage to tissues.
In this article, we introduce for the first time, a method to manufacture cellulose based electrically conductive non-woven three-dimensional (3D) structures using the foam forming technology. The manufacturing is carried out using a minimum amount of processing steps, materials, and hazardous chemicals. The optimized solution applies a single surfactant type and a single predefined portion for the two main processing steps: (1) the dispersing of nanocellulose (NC) and carbon nanotubes (CNT) and (2) the foam forming process. The final material system has a concentration of the used surfactant that is not only sufficient to form a stable and homogeneous nanoparticle dispersion, but it also results in stable foam in foam forming. In this way, the advantages of the foam forming process can be maximized for this application. The cellulose based composite material has a highly even distribution of CNTs over the NC network, resulting a conductivity level of 7.7 S/m, which increased to the value 8.0 S/m after surfactant removal by acetone washing. Also, the applicability and a design product case ‘Salmiakki’ were studied where the advantages of the material system were validated for a heating element application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.