This work demonstrates the potential of porous BaTiO3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α = 0.30–0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3–0 composite and a ‘composite in composite’ model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients . It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit
. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties.
The influence of the aspect ratio and volume fraction of ferroelectric ceramic inclusions in a 0–3 matrix on the hydrostatic parameters of a three-component 1–3-type composite is studied to demonstrate the important role of the elastic properties of the two-component matrix on the composite performance. Differences in the elastic properties of the 0–3 matrix and single-crystal rods lead to a considerable dependence of the hydrostatic response of the composite on the anisotropy of the matrix elastic properties. The performance of a 1–0–3 0.92 Pb ( Zn 1/3 Nb 2/3) O 3–0.08 PbTiO 3 SC/modified PbTiO 3 ceramic/polyurethane composite suggests that this composite system is of interest for hydroacoustic applications due to its high hydrostatic piezoelectric coefficients [Formula: see text] and [Formula: see text], squared figure of merit [Formula: see text], and electromechanical coupling factor [Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.