Aim: to compare the uniformity and adequacy of the placement of laser spots after mono-impulse and pattern photocoagulation for diabetic macular edema (DME). Patients and Methods: fundus photographs of 83 patients (121 eyes) taken right after retinal photocoagulation for DME were analyzed. Group 1 included images of 63 eyes after pattern photocoagulation and group 2 included images of 58 eyes after mono-impulse photocoagulation. Laser burns of varying intensity based on LʹEsperance scale (including grade 0 burns that were not seen on fundus photos) were calculated. Grade 2 burns were considered optimal. The number of non-optimal laser burns placed on retinal hemorrhages, blood vessels, hard exudates or healthy retina was calculated. The uniformity of the position of laser spots was assessed by calculating the standard deviation from the average distance between laser spots. Results: the percentage of laser spots of optimal intensity was 31.85% in group 1 and 25.15% in group 2. The percentage of non-optimally placed laser spots was 24.34% in group 1 and 7.99% in group 2. The uniformity of the placement was good in both groups (8.16 pixels and 8.44 pixels, respectively), no significant difference was reported (p=0.0591). Conclusion: pattern photocoagulation is preferable for DME compared to mono-impulse photocoagulation to provide adequate intensity of laser burns. Meanwhile, mono-impulse regimen provides more precise placement of laser spots. However, both conventional techniques are not effective enough due many intrinsic drawback, i.e., many laser spots are non-optimal in terms of intensity or placement. In routine practice, these drawbacks are outweighed by the skills and experience of laser surgeon. Planned precise placement of laser spots and the introduction of techniques of more precise preventive adjustment of energy level for each laser spot will contribute to the maximum effect of photocoagulation for DME. Further studies on personalized precise laser photocoagulation will improve the quality and efficacy of the treatment of macular edema. Keywords: diabetic retinopathy, diabetic macular edema, mono-impulse photocoagulation, pattern photocoagulation, navigated photocoagulation. For citation: Zamytskiy E.A., Zolotarev A.V., Karlova E.V. et al. Comparative quantitative assessment of the placement and intensity of laser spots for treating diabetic macular edema. Russian Journal of Clinical Ophthalmology. 2021;21(2):58–62. DOI: 10.32364/2311-7729- 2021-21-2-58-62.
The number of children born with cerebral palsy (CP) remains stably high. Novel approaches for rehabilitation of such patients are being sought. This study aimed to define the efficiency of the image visualization technologies in play activity for the physical rehabilitation of children with cerebral palsy. Sixteen boys with spastic diplegia aged 7–9 participated in the study. They were divided into treatment group (TG) and control group (CG), 8 children each. The TG patients were trained using the virtual reality based Krisaf training simulator twice a week for 40 minutes during 8 months. The child was suspended in the horizontal position and looked at the monitor through the specialised eyeglasses. Under the conditions of the marine environment immersion simulation with reduced gravity children performed motor tasks through play: searched for treasures, competed with dolphins etc. The CG patients attended the physical therapy lessons. Rehabilitation lessons using the virtual reality based Krisaf training simulator for children affected with spastic cerebral palsy led to a significant improvement of motor skills. Various motion tests showed an improvement over baseline, the average indicators increased 1.30–1.48 times. The difference between TG and CG results was statistically significant. In the CG referred to physical therapy the indicators increase was less than 10%, in the TG the increase reached 30–40%. It was concluded that the use of virtual reality based technologies promotes the optimization of neurophysiological processes in the motor analyzer cortical areas and better adaptation to motor loads.
Excessive postoperative scarring halts the effectiveness of glaucoma surgery and still remains a challenging problem. The purpose of this study was to develop a PLA-PEG-based drug delivery system with cyclosporine A or everolimus for wound healing modulation. Methods: PLA-PEG implants saturation with cyclosporine A or everolimus as well as their further in vitro release were analyzed. Anti-proliferative activity and cytotoxicity of the immunosuppressants were studied in vitro using human Tenon’s fibroblasts. Thirty-six rabbits underwent glaucoma filtration surgery with the application of sham implants or samples saturated with cyclosporine A or everolimus. The follow-up period was six months. A morphological study of the surgery area was also performed at seven days, one, and six months post-op. Results: PLA-PEG implants revealed a satisfactory ability to cumulate either cyclosporine A or everolimus. The most continuous period of cyclosporine A and everolimus desorption was 7 and 13 days, respectively. Immunosuppressants demonstrated marked anti-proliferative effect regarding human Tenon’s fibroblasts without signs of cytotoxicity at concentrations provided by the implants. Application of PLA-PEG implants saturated with immunosuppressants improved in vivo glaucoma surgery outcomes. Conclusions: Prolonged delivery of either cyclosporine A or everolimus by means of PLA-PEG implants represents a promising strategy of wound healing modulation in glaucoma filtration surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.