Метрическая связность с векторным кручением (также известная как полусимметрическая связность) является одной из трех основных связностей, описанных Э. Картаном. Данная связность играет важную роль в случае двумерных поверхностей, так как при этом любая метрическая связность является связностью с векторным кручением.К. Яно была доказана важная теорема о связи конформных деформаций и метрических связностей с векторным кручением. А именно: риманово многообразие допускает метрическую связность с векторным кручением, тензор кривизны которой равен нулю, тогда и только тогда, когда оно является конформно плоским. Таким образом, возникает задача об изучении (псевдо)римановых многообразий с метрической связностью с векторным кручением, тензор кривизны которых равен нулю.Данная работа посвящена решению поставленной задачи в случае трехмерных локально симметрических многообразий. Кроме того, приводится математическая модель, позволяющая вычислять компоненты тензора кривизны метрической связности с векторным кручением в случае локально однородных (псевдо)римановых многообразий.
The study of Ricci flows, which describe the deformation of (pseudo) Riemannian metrics on a manifold, and their solutions, Ricci solitons, has garnered much attention from mathematicians. However, previous studies have typically focused on manifolds with Levi-Civita connections. This paper breaks new ground by considering manifolds with semisymmetric connections, which also include the Levi-Civita connection. Metric connections with vector torsion, or semisymmetric connections, were first studied by E. Cartan on (pseudo) Riemannian manifolds. Later, K. Yano and I. Agricola studied tensor fields and geodesic lines of such connections, while P.N. Klepikov,
E.D. Rodionov, and O.P. Khromova considered the Einstein equation of semisymmetric connections on three-dimensional locally homogeneous (pseudo) Riemannian manifolds. Because the Ricci tensor of a semisymmetric connection is not symmetric in general, we focus on studying the symmetric and skew-symmetric parts of the Ricci tensor. Specifically, we investigate symmetric Ricci flows on three-dimensional Lie groups with J. Milnor's left-invariant (pseudo) Riemannian metric and E. Cartan's semisymmetric connection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.