Transvection is a phenomenon of interallelic communication whereby enhancers of one allele can activate a promoter located on the homologous chromosome. It has been shown for many independent genes that enhancers preferentially act on the cis-linked promoter, but deletion of this promoter allows the enhancers to act in trans. Here, we tested whether this cis-preference in the enhancer-promoter interaction could be reconstituted outside of the natural position of a gene. The yellow gene was chosen as a model system. Transgenic flies were generated that carried the yellow gene modified by the inclusion of the strategically placed recognition sites for the Cre and Flp recombinases. To facilitate transvection, an endogenous Su(Hw) insulator (1A2) or gypsy insulator was placed behind the yellow gene. Independent action of the recombinases produced a pair of derivative alleles, one containing the promoter-driven yellow gene, and the other, the enhancers and promoter that failed to produce a functional yellow protein. As a result, we observed strong transvection in many genomic regions, suggesting that a complete cis-preference of the enhancer-promoter interactions is mainly restricted to genes in their natural loci.