Локально однородные (псевдо)римановы многообразия изучались в работах многих математиков. Их обобщением являются локально конформно однородные (псевдо)римановы пространства, на которых транзитивно действуют конформные преобразования. Такие многообразия также ранее исследовались как в римановом случае, так и в псевдоримановом.В работе Е.Д. Родионова, В.В. Славского и Л.Н. Чибриковой было доказано, что из локально конформно однородного (псевдо)риманова пространства можно с помощью конформной деформации получить локально однородное пространство, если тензор Вейля (или тензор Схо-утена — Вейля в трехмерном случае) имеет ненулевой квадрат длины. Таким образом возникает задача об изучении (псевдо)римановых локально однородных и локально конформно однородных многообразий, тензор Схоутена — Вейля которых имеет нулевой квадрат длины, а сам не равен нулю.В данной работе приводится алгоритм, с помощью которого можно решить задачу о классификации четырехмерных локально однородных (псевдо)римановых многообразий с нетривиальной подгруппой изотропии и изотропным тензором Схоутена — Вейля.DOI 10.14258/izvasu(2018)4-14
It is known that a locally homogeneous manifold can be obtained from a locally conformally homogeneous (pseudo)Riemannian manifolds by a conformal deformation if the Weyl tensor (or the Schouten-Weyl tensor in the three-dimensional case) has a nonzero squared length. Thus, the problem arises of studying (pseudo)Riemannian locally homogeneous and locally conformally homogeneous manifolds, the Weyl tensor of which has zero squared length, and itself is not equal to zero (in this case, the Weyl tensor is called isotropic).
One of the important aspects in the study of such manifolds is the study of the curvature operators on them, namely, the problem of restoring a (pseudo)Riemannian manifold from a given Ricci operator.
The problem of the prescribed values of the Ricci operator on 3-dimensional locally homogeneous Riemannian manifolds has been solved by O. Kowalski and S. Nikcevic. Analogous results for the one-dimensional and sectional curvature operators were obtained by D.N. Oskorbin, E.D. Rodionov, and O.P Khromova.
This paper is devoted to the description of an example of studying the problem of the prescribed Ricci operator for four-dimensional locally homogeneous (pseudo) Riemannian manifolds with a nontrivial isotropy subgroup and isotropic Weyl tensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.