Последнее время становится актуальным изучение (псевдо)римановых многообразий с различными афинными связностями, отличными от связности ЛевиЧивита. Метрическая связность с векторным кручением (также известная как полусимметрическая связность) является одной из часто рассматриваемых связностей. Связь между конформными деформациями римановых многообразий и метрическими связностями с векторным кручением на них была установлена в работах К. Яно. А именно, риманово многообразие допускает метрическую связность с векторным кручением, тензор кривизны которой равен нулю, тогда и только тогда, когда оно является конформно плоским. В данной работе впервые исследуется уравнение Эйнштейна на трехмерных локально симметрических (псевдо)римановых многообразиях с метрической связностью с инвариантным векторным кручением. Получена теорема о том, что все такие многообразия либо являются многообразиями Эйнштейна относительно связности Леви-Чивита, либо являются конформно плоскими.
The study of (pseudo)Riemannian manifolds with different metric connections different from the Levi-Civita connection has become a subject of current interest lately. A metric connection with vectorial torsion (also known as a semi-symmetric connection) is a frequently considered one of them. The correlation between the conformal deformations of Riemannian manifolds and metric connections with vectorial torsion on them was established in the works of K. Yano. Namely, a Riemannian manifold admits a metric connection with vectorial torsion, the curvature tensor of which is zero, if and only if it is conformally flat. In this paper, we study the Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with metric connection with invariant vectorial torsion. We obtain a theorem stating that all such manifolds are either Einstein manifolds with respect to the Levi-Civita connection or conformally flat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.