The COmpound Semiconductor Materials On Silicon (COSMOS) program of the U.S. Defense Advanced Research Projects Agency (DARPA) focuses on developing transistor-scale heterogeneous integration processes to intimately combine advanced compound semiconductor (CS) devices with high-density silicon circuits. The technical approaches being explored in this program include high-density micro assembly, monolithic epitaxial growth, and epitaxial layer printing processes. In Phase I of the program, performers successfully demonstrated world-record differential amplifiers through heterogeneous integration of InP HBTs with commercially fabricated CMOS circuits. In the current Phase II, complex wideband, large dynamic range, high-speed digitalto-analog convertors (DACs) are under development based on the above heterogeneous integration approaches. These DAC designs will utilize InP HBTs in the critical high-speed, high-voltage swing circuit blocks and will employ sophisticated in situ digital correction techniques enabled by CMOS transistors. This paper will also discuss the Phase III program plan as well as future directions for heterogeneous integration technology that will benefit mixed signal circuit applications.