In many crops, weeds are managed by herbicides, mainly due to the decrease in crop yields and farmers' incomes caused by them. In general, chemical control of weeds is considered to be an easy, relatively cheap, and highly effective method. However, not all weeds can be successfully controlled, either because of their natural tolerance or their herbicide resistance. Glyphosate is one of the most widely used herbicides in the world. It can manage effectively a broad spectrum of weeds, and promotes conservation agriculture by significantly reducing conventional plough tillage. Unfortunately, its extensive use has led to the evolution of glyphosate resistance, which has evolved into a major problem for global crop production. Alternative herbicides are, in some cases, available, but they do not usually control certain weeds as efficiently as glyphosate. The transmission of herbicides to the target site is a complex process, and consists of several stages. Each herbicide is affected and can be manipulated by the product formulation for the optimization of its use. Many experiments have confirmed that different glyphosate salts and adjuvant additives are instrumental in the optimization of herbicide absorption and delivery processes. The objective of this paper is to provide a brief overview of these experiments and summarize the literature related to the effect of various glyphosate formulations and adjuvants on weed control. Determining the differences among formulations and adjuvants may lead to the further optimized long-term use of glyphosate.