Often, design problems are coupled and their concurrent resolution by interacting stakeholders is required. The ensuing interactions are characterized predominantly by degree of interdependence and level of cooperation. Since tradeoffs, made within and among sub-systems, inherently contribute to system level performance, bridging the associated gaps is crucial. With this in mind, effective collaboration, centered on continued communication, concise coordination, and non-biased achievement of system level objectives, is becoming increasingly important. Thus far, research in distributed and decentralized decision-making has focused primarily on conflict resolution. Game theoretic protocols and negotiation tactics have been used extensively as a means of making the required tradeoffs, often in a manner that emphasizes the maximization of stakeholder (personal) payoff over system level performance. More importantly, virtually all of the currently instantiated mechanisms are based upon the a priori assumption of the existence of solutions that are acceptable to all interacting parties. No explicit consideration has been given thus far to ensuring the convergence of stakeholder design activities leading up to the coupled decision and the associated determination of values for uncoupled and coupled design parameters. Consequently, unnecessary and costly iteration is likely to result from mismatched objectives. In this paper, we advocate moving beyond strategic collaboration towards co-design. We present an alternative coordination mechanism, centered on sharing key pieces of information throughout the process of determining a solution to a coupled system. Specifically, we focus on (1) establishing and assessing collaborative design spaces, (2) identifying and exploring regions of acceptable performance, and (3) preserving stakeholder dominion over design sub-system resolution throughout the duration of a given design process. The fundamental goal is to establish a consistent framework for goal-oriented collaboration that (1) more accurately represents the mechanics underlying product development and (2) facilitates interacting stakeholders in achieving their respective objectives in light of system level priorities. This is accomplished via improved utilization of shared resources and avoidance of unnecessary reductions in design freedom. Comparative performance of the proposed method is established using a simple example, involving the resolution of a tradeoff with respect to a system of non-linear equations.