Arterial blood pressure (BP) and vasoconstriction regulated by sympathetic nerve activity (SNA) are heightened during exercise in patients with peripheral artery disease (PAD). The exercise pressor reflex is considered as a neural mechanism responsible for the exaggerated autonomic responses to exercise in PAD. A series of studies have employed a rat model of PAD to examine signal pathways at receptor and cellular levels by which the exercise pressor reflex is amplified. This review will summarize results obtained from recent human and animal studies with respect to contribution of muscle afferents to augmented SNA and BP responses in PAD. The role played by adenosine triphosphate (ATP) and ATP sensitive purinergic P2X receptors will be emphasized.