For utilization in future electronic application of graphene materials, nitrogen (N) atom doping into graphene sheets is an important technology. We investigated the electrical conduction of carbon nanowalls (CNWs), consisting of stacks of graphene sheets standing vertically on substrates. By post-treatment for 30 s, the electrical conductivity of CNWs increased. On the other hand, as the post-treatment time increased, the electrical conductivity decreased. According to Hall measurement, the carrier density decreased with increasing post-treatment time, while the carrier mobility increased. Consequently, the electrical conduction of the CNWs was successfully controlled by N2 plasma treatment.