IFN regulatory factor (IRF)3 is a central regulator for IFN-β expression in different types of pathogenic infections. Mammals have various pathogenic sensors that are involved in monitoring pathogen intrusions. These sensors can trigger IRF3-mediated antiviral responses through different pathways. Endoplasmic reticulum-associated proteins stimulator of IFN gene (STING) and zinc finger DHHC-type containing 1 (ZDHHC1) are critical mediators of IRF3 activation in response to viral DNA infections. In this study, grass carp STING and ZDHHC1 were found to have some similar molecular features and subcellular localization, and both were upregulated upon stimulation with polyinosinic:polycytidylic acid, B-DNA, or Z-DNA. Based on these results, we suggest that grass carp STING and ZDHHC1 might possess some properties similar to their mammalian counterparts. Overexpression of ZDHHC1 and STING in kidney cells upregulated IFN expression, whereas knockdown of IRF3 inhibited IFN activation. In addition, coimmunoprecipitation and GST pull-down assays demonstrated that STING and ZDHHC1 can interact separately with IRF3 and promote the dimerization and nuclear translocation of IRF3. Furthermore, we also found that small interfering RNA-mediated knockdown of STING could inhibit the expression of IFN and ZDHHC1 in fish cells. Similarly, knockdown of STING resulted in inhibition of the IFN promoter. In contrast, ZDHHC1 knockdown also inhibited IFN expression but had no apparent effect on STING, which indicates that STING is necessary for IFN activation through ZDHHC1. In conclusion, STING and ZDHHC1 in fish can respond to viral DNA or RNA molecules in cytoplasm, as well as activate IRF3 and, eventually, trigger IFN expression.