AlGaN/GaN current aperture vertical electron transistors with regrown aperture and source regions have been fabricated and tested. A 2 μm thick GaN:Si drain region followed by a 0.4 μm GaN:Mg current-blocking layer were grown by metalorganic chemical vapor deposition on a c-plane sapphire substrate. Channel apertures were etched, and a maskless regrowth was performed to grow unintentionally doped GaN inside the aperture as well as above the insulating layer, and to add an AlGaN cap layer. Cl2 reactive ion etching was used to pattern the device mesa, and source, drain, and gate metals were then deposited. Devices were achieved with a maximum source-drain current of 750 mA/mm, an extrinsic transconductance of 120 mS/mm, and a 2-terminal gate breakdown of 65 V while exhibiting almost no DC-RF dispersion for 80 μs pulsed I–V curves. The suppression of DC-RF dispersion was shown to result from the absence of the large electric fields at the surface on the drain-side edge of the gate that are present in high electron mobility transistors. Parasitic leakage currents, which were present in all devices, have been studied in detail. Three leakage paths have been identified, and methods to eliminate them are discussed.