Understanding the manufacturing defects in magnetic tunnel junctions (MTJs), which are the data-storing elements in STT-MRAMs, and their resultant faulty behaviors are crucial for developing high-quality test solutions. This paper introduces a new type of MTJ defect: synthetic anti-ferromagnet flip (SAFF) defect, wherein the magnetization in both the hard layer and reference layer of MTJ devices undergoes an unintended flip to the opposite direction. Both magnetic and electrical measurement data of SAFF defect in fabricated MTJ devices is presented; it shows that such a defect reverses the polarity of stray field at the free layer of MTJ, while it has no electrical impact on the single isolated device. The paper also demonstrates that using the conventional fault modeling and test approach fails to appropriately model and test such a defect. Therefore device-aware fault modeling and test approach is used. It first physically models the defect and incorporate it into a Verilog-A MTJ compact model, which is afterwards calibrated with silicon data. The model is thereafter used for fault analysis and modeling within an STT-MRAM array; simulation results show that a SAFF defect may lead to a transient passive neighborhood pattern sensitive fault (tPNPSF) when all neighboring cells are in logic '1' state. Finally, test solutions for such fault are discussed.Index Terms-Device-aware test, STT-MRAMs, manufacturing defects, fault models• Discover a new STT-MRAM-specific defect based on silicon measurements; the defect is referred to as SAFF. • Present magnetic and electrical characterization of MTJ devices with the SAFF defect.