The embedded-DRAM (eDRAM) testing mixes up the techniques used for DRAM testing and SRAM testing since an eDRAM core combines DRAM cells with an SRAM interface (the so-called 1T-SRAM architecture). In this paper, we first present our test algorithm for eDRAM testing. A theoretical analysis to the leakage mechanisms of a switch transistor is also provided, based on that we can test the eDRAM at a higher temperature to reduce the total test time and maintain the same retention-fault coverage. Finally, we propose a mathematical model to estimate the defect level caused by wear-out defects under the use of error-correction-code circuitry, which is a special function used in eDRAMs compared to commodity DRAMs. The experimental results are collected based on 1-lot wafers with an 16 Mb eDRAM core.
This paper presents a novel memory test algorithm, named alternate hammering test, to detect the pairwise word-line hammering faults for application-specific DRAMs. Unlike previous hammering tests, which require excessively long test time, the alternate hammering test is designed scalable to industrial DRAM arrays by considering the array layout for potential fault sites and the highest DRAM-access frequency in real system applications. The effectiveness and efficiency of the proposed alternate hammering test are validated through the test application to an eDRAM macro embedded in a storage-application SoC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.