Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
REPORT DATE (DD-MM-YYYY)15 January 2013 (From -To)
REPORT TYPE
Final Report
DATES COVERED
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)EOARD Unit 4515 BOX 14 APO AE 09421
SPONSOR/MONITOR'S ACRONYM(S)AFRL/AFOSR/IOE (EOARD)
SPONSOR/MONITOR'S REPORT NUMBER(S)
AFRL-AFOSR-UK-TR-2013-0003
DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution is unlimited.
SUPPLEMENTARY NOTESGovernment Purpose Rights -University Di Pisa
ABSTRACTFor many years, conventional radars transmitted, received, and processed the same waveform on every pulse or burst within a coherent processing interval (CPI), independently of the environment. Now, modern radar systems have considerable flexibility in their modes of operation, both on receive and transmit. In particular, it is possible to modify the waveform on a pulse to pulse basis, and electronically steered phased arrays can quickly point the radar beam in any feasible direction. In the course of this research project, we introduced the Ambiguity Function, an analytical tool for waveform design and analysis that is useful for examining resolution, sidelobe behavior, and ambiguity in range and Doppler of a given signal waveform. Some techniques to design multiple access frequency hop codes with good auto and cross-ambiguity functions are characterized, focusing on the frequency hop patterns. We have shown that the performance of each channel of the multistatic system heavily depends on the transmitted waveform and on the geometry of the scenario, that is, the position of receivers and transmitters with respect to the position of the target. In particular, both geometry factors and transmitted waveforms play an important role in the shape of the Ambiguity Function and hence in the value of the Cramer-Rao Lower Bound (CRLB). We have calculated the bistatic CRLBs of target range and velocity of each transmit-receive pair as a function of the target kinematic parameters and to provide a local measure of the estimation accuracy of these parameters. Finally, in this work we have analyzed the problem of the optimum sensor selection along the trajectory of a tracked ta...