2009
DOI: 10.2478/s11533-008-0061-5
|View full text |Cite
|
Sign up to set email alerts
|

On the Ricci operator of locally homogeneous Lorentzian 3-manifolds

Abstract: Abstract:We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds. MSC:53C50, 53C20, 53C30

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
8
0
7

Year Published

2011
2011
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(15 citation statements)
references
References 12 publications
0
8
0
7
Order By: Relevance
“…In [6] Calvaruso and Kowalski calculate Ricci operators for left-invariant Lorentz metrics on three-dimensional Lie groups, assuming they are not symmetric (see also previous curvature calculations in [5,7,19]). If the metric on U \S were symmetric, then the covariant derivative of the curvature would vanish on all of U , which would imply U locally symmetric, hence locally homogeneous; therefore, we need consider only nonsymmetric left-invariant metrics here.…”
Section: Definition 13mentioning
confidence: 98%
See 1 more Smart Citation
“…In [6] Calvaruso and Kowalski calculate Ricci operators for left-invariant Lorentz metrics on three-dimensional Lie groups, assuming they are not symmetric (see also previous curvature calculations in [5,7,19]). If the metric on U \S were symmetric, then the covariant derivative of the curvature would vanish on all of U , which would imply U locally symmetric, hence locally homogeneous; therefore, we need consider only nonsymmetric left-invariant metrics here.…”
Section: Definition 13mentioning
confidence: 98%
“…On the other hand, recall that in [6] Calvaruso and Kowalski classified Ricci operators for left-invariant Lorentz metrics g on three-dimensional Lie groups. In particular, they proved (see their Theorems 3.5, 3.6 and 3.7) that a Ricci operator of a left-invariant Lorentz metric on a nonunimodular three-dimensional Lie group admits a triple eigenvalue r = 0 if and only if g is of constant sectional curvature.…”
Section: Proposition 22mentioning
confidence: 99%
“…В случае левоинвариантных лоренцевых метрик на трех-мерных группах Ли известна работа Дж. Каль-варузо, О. Ковальского [2], в которой исследуется задача о существовании группы Ли с левоинвари-антной лоренцевой метрикой и заданными значе-ниями спектра оператора Риччи.…”
Section: Doi 1014258/izvasu(2017)1-17unclassified
“…В случае лоренцевых метрик на трехмерных ло-кально однородных пространствах известна рабо-та Дж. Кальварузо, О. Ковальского [2], в кото-рой исследуется задача о существовании локально однородного лоренцева пространства с заданным оператором Риччи.…”
unclassified