The origin of threshold voltage instability with gate voltage in MoS 2 transistors is poorly understood but critical for device reliability and performance. Reversibility of the temperature dependence of hysteresis and its inversion with temperature in MoS 2 transistors has not been demonstrated. In this work, we delineate two independent mechanisms responsible for thermally assisted hysteresis inversion in gate transfer characteristics of contact resistance-independent multilayer MoS 2 transistors. Variable temperature hysteresis measurements were performed on gated four-terminal van der Pauw and two-terminal devices of MoS 2 on SiO 2 . Additional hysteresis measurements on suspended (~100 nm air gap between MoS 2 and SiO 2 ) transistors and under different ambient conditions (vacuum/nitrogen) were used to further isolate the mechanisms. Clockwise hysteresis at room temperature (300 K) that decreases with increasing temperature is shown to result from intrinsic defects/traps in MoS 2 . At higher temperatures a second, independent mechanism of charge trapping and de-trapping between the oxide and p + Si gate leads to hysteresis collapse at~350 K and anti-clockwise hysteresis (inversion) for temperatures >350 K. The intrinsic-oxide trap model has been corroborated through device simulations. Further, pulsed current-voltage (I-V) measurements were carried out to extract the trap time constants at different temperatures. Non-volatile memory and temperature sensor applications exploiting temperature dependent hysteresis inversion and its reversibility in MoS 2 transistors have also been demonstrated. npj 2D Materials and Applications (2017) 1:34 ; doi:10.1038/s41699-017-0038-y INTRODUCTION Among two-dimensional materials, graphene 1,2 was the first to be isolated and studied with respect to electronic applications. Due to lack of an energy bandgap in graphene, other 2D materials such as layered transition metal dichalcogenides (TMDs) comprising a wide selection of materials with different bandstructures, and therefore different electrical and optical properties, have garnered significant attention.3-5 Molybdenum disulfide (MoS 2 ) has emerged as a prospective candidate for transistor applications. The presence of a direct bandgap (~1.8 eV) in monolayer form and an indirect bandgap (~1.2 eV) in multilayer MoS 2 makes it a promising channel material for field effect transistors (FETs).