Lightweight, long lifetime, and flexible polymer membrane-based structures, which are tightly folded on the ground and then unfolded in space, suffer from repeated bending before launching and fatal erosion on exposure to atomic oxygen (AO) in a low Earth orbit (LEO). Although various AO-resistant coatings have been developed, a coating that can simultaneously meet the critical requirements for the mechanical robustness and long-term protection of polymer membranes is rare. Here, we fabricated a coating with mechanical robustness and long-term space endurance, starting from an inorganic polymer precursor. A hybrid coating with a nanoscale polymer/silica bicontinuous phase is first prepared on the ground, which exhibits outstanding flexibility and excellent abrasion resistance. Then, the coating shows an in situ self-evolution behavior under AO and ultraviolet (UV) synergism to afford dense and crack-free silica coating with outstanding endurance. Our strategy displays great potential for protecting deployable membrane structures serving in the LEO.