We report on the current properties of Al1−xInxN (x ≈ 0.18) layers lattice-matched (LM) to GaN and their specific use to realize nearly strain-free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state-of-the-art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of (1–5) × 1018 cm−3 and a large Stokes shift (∼800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified through the properties of GaN/AlInN multiple quantum wells (QWs) suitable for near-infrared intersubband applications. A built-in electric field of 3.64 MV cm−1 solely due to spontaneous polarization is deduced from photoluminescence measurements carried out on strain-free single QW heterostructures, a value in good agreement with that deduced from theoretical calculation. Other potentialities regarding optoelectronics are demonstrated through the successful realization of crack-free highly reflective AlInN/GaN distributed Bragg reflectors (R > 99%) and high quality factor microcavities (Q > 2800) likely to be of high interest for short wavelength vertical light emitting devices and fundamental studies on the strong coupling regime between excitons and cavity photons. In this respect, room temperature (RT) lasing of a LM AlInN/GaN vertical cavity surface emitting laser under optical pumping is reported. A description of the selective lateral oxidation of AlInN layers for current confinement in nitride-based light emitting devices and the selective chemical etching of oxidized AlInN layers is also given. Finally, the characterization of LM AlInN/GaN heterojunctions will reveal the potential of such a system for the fabrication of high electron mobility transistors through the report of a high two-dimensional electron gas sheet carrier density (ns ∼ 2.6 × 1013 cm−2) combined with a RT mobility μe ∼ 1170 cm2 V−1 s−1 and a low sheet resistance, R ∼ 210 Ω/□.
We report on III-nitride based blue vertical cavity surface emitting lasers using defect-free highly reflective AlInN/GaN distributed Bragg reflectors grown on c-plane free-standing GaN substrates. Lasing is demonstrated at room temperature under pulsed electrical injection. The high lasing threshold current density still prevents devices from continuous wave lasing because of large self-heating. The reasons for such a high threshold are discussed and we show that it mainly comes from large light absorption in the indium tin oxide current spreading layer. Properly tuning both its thickness and its position with respect to the electrical field could remarkably decrease the threshold.
The authors report a technique for selective wet chemical etching of an AlInN sacrificial layer lattice-matched to GaN for the fabrication of air-gap photonic structures. It is used to demonstrate high quality factor (Q) microdisk cavities. Whispering gallery modes are observed in the photoluminescence spectra of InGaN∕GaN quantum wells (QWs) embedded in the GaN microdisks. Q factors of up to 3500 are obtained. The measured Qs are found to be limited by the QW absorption. Room temperature laser action is achieved for a wide spectral range (409–475nm) with a threshold down to 166kW∕cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.