Abstract-The design and performance of next-generation chip multiprocessors (CMPs) will be bound by the limited amount of power that can be dissipated on a single die. We present photonic networks-on-chip (NoC) as a solution to reduce the impact of intrachip and off-chip communication on the overall power budget. The low loss properties of optical waveguides, combined with bit-rate transparency, allow for a photonic interconnection network that can deliver considerably higher bandwidth and lower latencies with significantly lower power dissipation than an interconnection network based only on electronic signaling. We explain why on-chip photonic communication has recently become a feasible opportunity and explore the challenges that need to be addressed to realize its implementation. We introduce a novel hybrid microarchitecture for NoCs that combines a broadband photonic circuit-switched network with an electronic overlay packet-switched control network. This design leverages the strength of each technology and represents a flexible solution for the different types of messages that are exchanged on the chip; large messages are communicated more efficiently through the photonic network, while short messages are delivered electronically with minimal power consumption. We address the critical design issues including topology, routing algorithms, deadlock avoidance, and path-setup/teardown procedures. We present experimental results obtained with POINTS, an event-driven simulator specifically developed to analyze the proposed design idea, as well as a comparative power analysis of a photonic versus an electronic NoC. Overall, these results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs.
Recent remarkable advances in nanoscale siliconphotonic integrated circuitry specifically compatible with CMOS fabrication have generated new opportunities for leveraging the unique capabilities of optical technologies in the on-chip communications infrastructure. Based on these nano-photonic building blocks, we consider a photonic network-on-chip architecture designed to exploit the enormous transmission bandwidths, low latencies, and low power dissipation enabled by data exchange in the optical domain. The novel architectural approach employs a broadband photonic circuit-switched network driven in a distributed fashion by an electronic overlay control network which is also used for independent exchange of short messages. We address the critical network design issues for insertion in chip multiprocessors (CMP) applications, including topology, routing algorithms, path-setup and teardown procedures, and deadlock avoidance. Simulations show that this class of photonic networks-on-chip offers a significant leap in the performance for CMP intrachip communication systems delivering low-latencies and ultra-high throughputs per core while consuming minimal power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.