The present study shows the synthesis of silver nanoparticles (Ag NPs) using a methanolic and aqueous extract of R. stricta. UV–visible spectroscopy, energy-dispersive X-ray diffraction (EDX), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR) techniques were used to further characterize the Ag NPs. UV–visible spectra give surface Plasmon resonance (SPR) at 490–560 nm for Ag NPs. The existence of various functional groups existing in biomolecules capping the nanoparticles is indicated by the FTIR spectrum. The average size of Ag NPs is 20–35 nm, while the shape is spherical, as confirmed by FESEM. The plant extract and Ag NPs were evaluated against their antioxidant, antibacterial (Staphylococcus aureus, E. coli, and Salmonella typhi), and antifungal activities (Trichophyton longifusis, Candida albican, and Fusarium solani), where the Ag NPs exhibited superior activity versus the plant extract. The inhibitory effect of NPs against the tested strain was more effective as compared to the crude extract of R. stricta.
Tenofovir alafenamide (TAF) is an antiretroviral (ARV) drug that is used for the management and prevention of human immunodeficiency virus (HIV). The clinical availability of ARV delivery systems that provide long-lasting protection against HIV transmission is lacking. There is a dire need to formulate nanocarrier systems that can help in revolutionizing the way to fight against HIV/AIDS. Here, we aimed to synthesize a polymer using chitosan and polyethylene glycol (PEG) by the PEGylation of chitosan at the hydroxyl group. After successful modification and confirmation by FTIR, XRD, and SEM, TAF-loaded PEGylated chitosan nanoparticles were prepared and analyzed for their particle size, zeta potential, morphology, crystallinity, chemical interactions, entrapment efficacy, drug loading, in vitro drug release, and release kinetic modeling. The fabricated nanoparticles were found to be in a nanosized range (219.6 nm), with ~90% entrapment efficacy, ~14% drug loading, and a spherical uniform distribution. The FTIR analysis confirmed the successful synthesis of PEGylated chitosan and nanoparticles. The in vitro analysis showed ~60% of the drug was released from the PEGylated polymeric reservoir system within 48 h at pH 7.4. The drug release kinetics were depicted by the Korsmeyer–Peppas release model with thermodynamically nonspontaneous drug release. Conclusively, PEGylated chitosan has the potential to deliver TAF from a nanocarrier system, and in the future, cytotoxicity and in vivo studies can be performed to further authenticate the synthesized polymer.
The present study focused on demonstrating the induction of humoral and cell-mediated immunity through the establishment of a cytokine network. We hypothesized the anti-inflammatory, pro-inflammatory, and IgE antibody levels after vaccination with lyophilized recombinant HBsAg-loaded docosahexaenoic acid nanovesicles (LRPDNV), and the efficacy compared well with standard commercial recombinant hepatitis B vaccine. The cytokine network was efficiently regulated by striking a balance between pro-inflammatory cytokines IL-6, IL-8R, and IL-12 and anti-inflammatory cytokines such as IL-2, IL-4, IL-10, and IFN-γ immune response on the 14th and 30th day after primary and booster immunization. The acute phase protein CRP level was increased due to IL-6 after immunizing with LRPDNV. On the other hand, the IgE level was not significantly increased to induce any allergic reactions after immunization with LRPDNV. The study concluded that after immunizing with LRPDNV, a significant immunological response was established, implying that DHA nanovesicles have significant potential as an adjuvant method for delivering recombinant HBsAg protein. On the other hand, following immunization with LRPDNV, the IgE level was not noticeably elevated enough to cause any adverse reactions. The study concludes that a robust immune response was developed after immunizing with LRPDNV and suggests that DHA nanovesicles have much potential to deliver recombinant HBsAg protein.
The current study aimed to assess the pharmacological potential of Justicia adhatoda by evaluating the presence of biologically active compounds using the gas chromatography–mass spectrometry approach and to undertake biological activities for the effectiveness of the present compounds using standard tests. A total of 21 compounds were identified in the gas chromatography–mass spectrometry analysis of the ethyl acetate fraction in which 14 of the identified compounds are recognized for their pharmacological potential in the literature. In total, four fractions (ethyl acetate, chloroform, n-hexane, and aqueous) were evaluated for pharmacological activities. In carrageenan-induced inflammation, the chloroform fraction exhibited high anti-inflammatory activity (46.51%). Similarly, the analgesic potential of ethyl acetate fraction was the most effective (300 mg/kg) in the acetic acid-induced test. Similarly, in the formalin test, ethyl acetate fraction exhibited maximum inhibition in both early (74.35%) and late phases (88.38). Maximum inhibition of pyrexia (77.98%) was recorded for the ethyl acetate fraction (300 mg/kg). In DPPH assay, the ethyl acetate fraction revealed the highest scavenging potential among other fractions (50 μg/ml resulted in 50.40% and 100 μg/ml resulted in 66.74% scavenging).
The aim of the present study investigates the hepatoprotective, nephroprotective and hematopoietic and antioxidant effects of Dianthus orientalis leaves aqueous extract (DO.AQ) in rabbits intoxicated with paracetamol. Different experimental groups were formed, i.e., group N, group T, group ELD, group EMD, group EHD and group SM. The groups with leaves aqueous extract of Dianthus orientalis of 200 and 400 mg/kg body weight, i.e., group EMD and group EHD, showed remedial effects; however, a high dose extract significantly (p < 0.05) reduced the elevated serum levels of alanine transaminase ALT, aspartate transaminase AST and alkaline phosphatase ALP and renal related indices such as serum creatinine, urea and uric acid, and serum electrolytes such as Ca, Mg, P, Na and K, as well as the total count of RBC, WBC, platelets and hemoglobin Hb concentration, mean corpuscular hemoglobin MCH concentration and hematocrit HCT values. Additionally, the extract showed positive effects on the lipid profile, i.e., decreasing levels of cholesterol, triglycerides and LDL and increasing levels of HDL. The levels of thiobarbituric acid reactive substances TBARS, glutathione GSH and radical scavenging activity were also evaluated in liver and kidney homogenates. Paracetamol fed animals had high levels of thiobarbituric acid reactive substances and low levels of glutathione GSH and radical scavenging activity (RSA). Extract ingestion caused a significant increase in glutathione and radical scavenging activity RSA levels, while reducing the (TBARS) levels, showing that the extracts have antioxidant potentials. The antioxidant capacity of the Dianthus orientalis leaves aqueous extract at various dosages demonstrated an increased inhibition of DPPH, i.e., 2, 2-diphenyl-1-picrylehydrazyle free radical. The histological study of the liver and kidney supports the protective activity of Dianthus orientalis leaves aqueous extract against paracetamol intoxication with optimistic effects regarding oxidative stress condition and serum electrolytes balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.