Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.
Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern IoT applications. The growing number of networked IoT devices generates a large amount of data. However, processing and memorizing this massive volume of data at local nodes have been deemed critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring cloud computing (CC) processes within reach of users, to address computation-intensive offloading and latency issues. This paper provides a comprehensive review of the most relevant research works related to UAV technology applications in terms of enabled or assisted MEC architectures. It details the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency, task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be tackled when using AI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.