Recognizing objects in images requires complex skills that involve knowledge about the context and the ability to identify the borders of the objects. In computer vision, this task is called semantic segmentation and it pertains to the classification of each pixel in an image. The task is of main importance in many real-life scenarios: in autonomous vehicles, it allows the identification of objects surrounding the vehicle; in medical diagnosis, it improves the ability of early detecting of dangerous pathologies and thus mitigates the risk of serious consequences. In this work, we propose a new ensemble method able to solve the semantic segmentation task. The model is based on convolutional neural networks (CNNs) and transformers. An ensemble uses many different models whose predictions are aggregated to form the output of the ensemble system. The performance and quality of the ensemble prediction are strongly connected with some factors; one of the most important is the diversity among individual models. In our approach, this is enforced by adopting different loss functions and testing different data augmentations. We developed the proposed method by combining DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers. The developed solution was then assessed through an extensive empirical evaluation in five different scenarios: polyp detection, skin detection, leukocytes recognition, environmental microorganism detection, and butterfly recognition. The model provides state-of-the-art results.
It is well established that in many scenarios there is no single solver that will provide optimal performance across a wide range of problem instances. Taking advantage of this observation, research into algorithm selection is designed to help identify the best approach for each problem at hand. This segregation is usually based on carefully constructed features, designed to quickly present the overall structure of the instance as a constant size numeric vector. Based on these features, a plethora of machine learning techniques can be utilized to predict the appropriate solver to execute, leading to significant improvements over relying solely on any one solver. However, being manually constructed, the creation of good features is an arduous task requiring a great deal of knowledge of the problem domain of interest. To alleviate this costly yet crucial step, this paper presents an automated methodology for producing an informative set of features utilizing a deep neural network. We show that the presented approach completely automates the algorithm selection pipeline and is able to achieve significantly better performance than a single best solver across multiple problem domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.