Objective: Obstructive sleep apnea (OSA) is considered a major sleep-related breathing problem with an increasing prevalence rate. Retrospective studies have revealed the risk of various comorbidities associated with increased severity of OSA. This study aims to identify novel metabolic biomarkers associated with severe OSA.Methods: In total, 50 cases of OSA patients (49.74 ± 11.87 years) and 30 controls (39.20 ± 3.29 years) were included in the study. According to the polysomnography reports and questionnaire-based assessment, only patients with an apnea–hypopnea index (AHI >30 events/hour) exceeding the threshold representing severe OSA patients were considered for metabolite analysis. Plasma metabolites were analyzed using gas chromatography–mass spectrometry (GC-MS).Results: A total of 92 metabolites were identified in the OSA group compared with the control group after metabolic profiling. Metabolites and their correlated metabolic pathways were significantly altered in OSA patients with respect to controls. The fold-change analysis revealed markers of chronic kidney disease, cardiovascular risk, and oxidative stress-like indoxyl sulfate, 5-hydroxytryptamine, and 5-aminolevulenic acid, respectively, which were significantly upregulated in OSA patients.Conclusion: Identifying these metabolic signatures paves the way to monitor comorbid disease progression due to OSA. Results of this study suggest that blood plasma-based biomarkers may have the potential for disease management.
The authors are responsible for the content of this article. The Editorial and the publisher has taken reasonable steps to check the content of the article with reference to publishing ethics with adequate peer reviews deposited at PUBLONS.
High-fat-diet (HFD)-induced obesity is associated with an elevated risk of insulin resistance (IR), which may precede the onset of type 2 diabetes mellitus and associated metabolic complications. Being a heterogeneous metabolic condition, it is pertinent to understand the metabolites and metabolic pathways that are altered during the development and progression of IR toward T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or chow diet (CD) for 16 weeks. Collected samples were analyzed by gas chromatography−tandem mass spectrometry (GC−MS/MS). Data on the identified raw metabolites were evaluated using a combination of univariate and multivariate statistical methods. Mice fed with HFD had glucose and insulin intolerance associated with impairment of insulin signaling in key metabolic tissues. From the GC−MS/MS analysis of serum samples, a total of 75 common annotated metabolites were identified between HFD-and CD-fed mice. In the t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were up-accumulated, whereas 6 metabolites were down-accumulated. Pathway analysis identified 4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and linoleic acid metabolism were upregulated, whereas the TCA cycle and pentose and glucuronate interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These results show the distinct metabolic profiles associated with the onset of IR that could provide promising metabolic biomarkers for diagnostic and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.