Campylobacter, Arcobacter, and Helicobacter species have been isolated from many vertebrate hosts, including birds, mammals, and reptiles. Multiple studies have focused on the prevalence of these Epsilonproteobacteria genera in avian and mammalian species. However, little focus has been given to the presence within reptiles, and their potential zoonotic and pathogenic roles. In this study, occurrence, diversity, and host association of intestinal Epsilonproteobacteria were determined for a large variety of reptiles. From 2011 to 2013, 444 cloacal swabs and fecal samples originating from 417 predominantly captive-held reptiles were screened for Epsilonproteobacteria. Campylobacter, Arcobacter, and Helicobacter genus specific PCRs were performed directly on all samples. All samples were also cultured on selective media and screened for the presence of Epsilonproteobacteria. Using a tiered approach of AFLP, atpA, and 16S rRNA sequencing, 432 Epsilonproteobacteria isolates were characterized at the species level. Based on PCR, Campylobacter, Arcobacter, and Helicobacter were detected in 69.3% of the reptiles; 82.5% of the chelonians, 63.8% of the lizards, and 58.0% of the snakes were positive for one or more of these genera. Epsilonproteobacteria were isolated from 22.1% of the reptiles and were isolated most frequently from chelonians (37.0%), followed by lizards (19.6%) and snakes (3.0%). The most commonly isolated taxa were Arcobacter butzleri, Arcobacter skirrowii, reptile-associated Campylobacter fetus subsp. testudinum, and a putative novel Campylobacter taxon. Furthermore, a clade of seven related putative novel Helicobacter taxa was isolated from lizards and chelonians. This study shows that reptiles carry various intestinal Epsilonproteobacteria taxa, including several putative novel taxa.
Background ESBL-producing Enterobacteriaceae (ESBL-E) are observed in many reservoirs. Pets might play an important role in the dissemination of ESBL-E to humans since they live closely together. Objectives To identify prevalence, risk factors, molecular characteristics, persistence and acquisition of ESBL-E in dogs and cats, and co-carriage in human–pet pairs belonging to the same household. Methods In a nationwide study, one person per household was randomly invited to complete a questionnaire and to submit a faecal sample. Dog and cat owners were invited to also submit a faecal sample from their pet. Repeated sampling after 1 and 6 months was performed in a subset. ESBL-E were obtained through selective culture and characterized by WGS. Logistic regression analyses and random forest models were performed to identify risk factors. Results The prevalence of ESBL-E carriage in these cohorts was 3.8% (95% CI: 2.7%–5.4%) for human participants (n=550), 10.7% (95% CI: 8.3%–13.7%) for dogs (n=555) and 1.4% (95% CI: 0.5%–3.8%) for cats (n=285). Among animals, blaCTX-M-1 was most abundant, followed by blaCTX-M-15. In dogs, persistence of carriage was 57.1% at 1 month and 42.9% at 6 months. Eating raw meat [OR: 8.8, 95% CI: 4.7–16.4; population attributable risk (PAR): 46.5%, 95% CI: 41.3%–49.3%] and dry food (OR: 0.2, 95% CI: 0.1–0.5; PAR: 56.5%, 95% CI: 33.2%–66.6%) were predictors for ESBL-E carriage in dogs. Human–dog co-carriage was demonstrated in five households. Human–cat co-carriage was not observed. Conclusions ESBL-E prevalence was higher in dogs than in humans and lowest in cats. The main risk factor for ESBL-E carriage was eating raw meat. Co-carriage in dogs and household members was uncommon.
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component.
A longitudinal study was performed to (i) investigate the continuity of shedding of extended-spectrum-beta-lactamase (ESBL)-producing Enterobacteriaceae in dogs without clinical signs, (ii) identify dominant plasmid-mediated ESBL genes, and (iii) quantify ESBL-producing Enterobacteriaceae in feces. Fecal samples from 38 dogs were collected monthly for 6 months. Additional samples were collected from 7 included dogs on a weekly basis for 6 weeks. Numbers of CFU per gram of feces for nonwild-type Enterobacteriaceae were determined by using MacConkey agar supplemented with 1 mg/liter cefotaxime (MCC), and those for total Enterobacteriaceae were determined by using MacConkey agar. Cefotaxime-resistant isolates were screened by PCR and sequence analysis for the presence of bla CTX-M , bla CMY , bla SHV , bla OXA , and bla TEM gene families. Bacterial species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. PCR-negative isolates were tested by a double-disk synergy test for enhanced AmpC expression. A total of 259 samples were screened, and 126 samples were culture positive on MCC, resulting in 352 isolates, 327 of which were Escherichia coli. Nine dogs were continuously positive during this study, and 6 dogs were continuously negative. Monthly or weekly shifts in fecal shedding were observed for 23 dogs. Genotyping showed a large variety of ESBL genes and gene combinations at single and multiple consecutive sampling moments. The ESBL genes bla CTX-M-1 , bla CTX-M-14 , bla CTX-M-15 , bla SHV-12 , and bla CMY-2 were most frequently found. The mean number of CFU of non-wild-type Enterobacteriaceae was 6.11 ؋ 10 8 CFU/g feces. This study showed an abundance of ESBL-producing Enterobacteriaceae in dogs in the Netherlands, mostly in high concentrations. Fecal shedding was shown to be highly dynamic over time, which is important to consider when studying ESBL epidemiology.A substantial share of the present global emergence of antimicrobial resistance is represented by extended-spectrumbeta-lactamase (ESBL)-producing Enterobacteriaceae. So far, these bacteria have been isolated from a large variety of sources, including humans, animals, and the environment. Together, these sources seem to form a complex network of reservoirs and transmission routes where ESBL-producing Enterobacteriaceae are circulating (1).High prevalences of ESBL-producing Enterobacteriaceae were found in Dutch poultry, pigs, and cattle (2). High prevalences of ESBL-producing Enterobacteriaceae were also found in Dutch companion animals, i.e., 45% in dogs without clinical signs and 55% in diarrheic dogs (3). As companion animals live in close contact with humans, they might contribute substantially to the exposure of humans to ESBL-producing Enterobacteriaceae. Similar ESBL gene types, i.e., CTX-M-14, CTX-M-15, SHV-12, and CMY-2, were found in strains originating from humans and companion animals (1). Additionally, transmission of CTX-M-15-carrying ST131 and ST648 Escherichia coli stra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.