The field-orientation dependent thermal conductivity of the heavy-fermion superconductor UPt3 was measured down to very low temperatures and under magnetic fields throughout the distinct superconducting phases: B and C phases. In the C phase, a striking twofold oscillation of the thermal conductivity within the basal plane is resolved reflecting the superconducting gap structure with a line of node along the a axis. Moreover, we find an abrupt vanishing of the oscillation across a transition to the B phase, as a clear indication of a change of gap symmetries. We also identify extra two line nodes below and above the equator in both B and C phases. From these results together with the symmetry consideration, the gap function of UPt3 is determined as a E(1u) representation characterized by a combination of two line nodes at the tropics and point nodes at the poles.
The Schottky source/drain metal-oxide-semiconductor field-effect transistor (MOSFET) has potential for scaling to the nanometer regime, because low electrode resistances with very shallow extension can be realized using metal source/drain. In this study, very short channel n- and p-type Schottky source/drain MOSFETs with silicon-on-insulator (SOI) structure were analyzed theoretically, and n-type devices were demonstrated experimentally. It was shown theoretically that a drivability of the Schottky source/drain MOSFET comparable to that of conventional MOSFETs can be realized with a low Schottky barrier height. The short-channel effect can be suppressed even with a 15-nm-long channel at t
OX = 1 nm and t
SOI = 3 nm. The room-temperature operation of sub-50-nm n-type ErSi2 Schottky source/drain MOSFETs on a separation by implanted oxygen (SIMOX) substrate was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.